Estimating parameters in diffusion processes using an approximate maximum likelihood approach
نویسنده
چکیده
We present an approximate Maximum Likelihood estimator for univariate Itô stochastic differential equations driven by Brownian motion, based on numerical calculation of the likelihood function. The transition probability density of a stochastic differential equation is given by the Kolmogorov forward equation, known as the Fokker-Planck equation. This partial differential equation can only be solved analytically for a limited number of models, which is the reason for applying numerical methods based on higher order finite differences. The approximate likelihood converges to the true likelihood, both theoretically and in our simulations, implying that the estimator has many nice properties. The estimator is evaluated on simulated data from the Cox-Ingersoll-Ross model and a non-linear extension of the Chan-Karolyi-Longstaff-Sanders model. The estimates are similar to the Maximum Likelihood estimates when these can be calculated and converge to the true Maximum Likelihood estimates as the accuracy of the numerical scheme is increased. The estimator is also compared to two benchmarks; a simulation-based estimator and a Crank-Nicholson scheme applied to the Fokker-Planck equation, and the proposed estimator is still competitive.
منابع مشابه
A Two-stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations
This paper motivates and introduces a two-stage method for estimating diffusion processes based on discretely sampled observations. In the first stage we make use of the feasible central limit theory for realized volatility, as recently developed in Barndorff-Nielsen and Shephard (2002), to provide a regression model for estimating the parameters in the diffusion function. In the second stage t...
متن کاملA two-stage realized volatility approach to estimation of diffusion processes with discrete data
This paper motivates and introduces a two-stage method of estimating diffusion processes based on discretely sampled observations. In the first stage we make use of the feasible central limit theory for realized volatility, as developed in [Jacod, J., 1994. Limit of random measures associated with the increments of a Brownian semiartingal. Working paper, Laboratoire de Probabilities, Universite...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملComment on Garland B. Durham and A. Ronald Gallant’s “Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes”
This paper proposes an interesting approach for estimating the parameters of nonlinear diffusion models with discretely sampled data. The parameter estimates are obtained by maximizing an approximate likelihood function that is obtained by a Monte Carlo importance sampling method. As the authors point out, the elements of their approach are not substantially new. In particular, the idea of appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 151 شماره
صفحات -
تاریخ انتشار 2007