Computational Intelligence in Circuit Synthesis
نویسندگان
چکیده
This paper is devoted to the synthesis of combinational logic circuits through computational intelligence or, more precisely, using evolutionary computation techniques. Are studied two evolutionary algorithms, the Genetic and the Memetic Algorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). GAs are optimization and search techniques based on the principles of genetics and natural selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search strategy, being the individual optimization in the form of a local search. The PSO is a population-based search algorithm that starts with a population of random solutions called particles. This paper presents the results for digital circuits design using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to the number of generations required to achieve the solutions. The article analyzes also a new fitness function that includes an error discontinuity measure, which demonstrated to improve significantly the performance of the algorithm.
منابع مشابه
Fast Mux-based Adder with Low Delay and Low PDP
Adders, as one of the major components of digital computing systems, have a strong influence on their performance. There are various types of adders, each of which uses a different algorithm to do addition with a certain delay. In addition to low computational delay, minimizing power consumption is also a main priority in adder circuit design. In this paper, the proposed adder is divided into s...
متن کاملSynthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions
This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution. Keywords— Circuit Design, Fractional-Order Systems, Genetic Algorithms, Logic Circuits.
متن کاملAutomatic Creation of Computer Programs for Designing Electrical Circuits Using Genetic Programming
One of the central goals of computer science is to get computers to solve problems starting from only a high-level statement of the problem. The goal of automating the design process bears many similarities to the goal of automatically creating computer programs. The design process entails creation of a complex structure to satisfy user-defined requirements. The design process is usually viewed...
متن کاملComputational Complexity of Constraint Satisfaction
The input to a constraint satisfaction problem (CSP) consists of a set of variables, each with a domain, and constraints between these variables formulated by relations over the appropriate domains; the question is if there is an assignment of values to the variables that satisfies all constraints. Different algorithmic tasks for CSPs (checking satisfiability, counting the number of solutions, ...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JACIII
دوره 11 شماره
صفحات -
تاریخ انتشار 2007