High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip.
نویسندگان
چکیده
We present a polymer microchip capable of monitoring neuronal activity with a fidelity never before obtained on a planar patch-clamp device. Cardio-respiratory neurons Left Pedal Dorsal 1 (LPeD1) from mollusc Lymnaea were cultured on the microchip's polyimide surface for 2 to 4 hours. Cultured neurons formed high resistance seals (gigaseals) between the cell membrane and the surface surrounding apertures etched in the polyimide. Gigaseal formation was observed without applying external force, such as suction, on neurons. The formation of gigaseals, as well as the low access resistance and shunt capacitance values of the polymer microchip resulted in high-fidelity recordings. On-chip culture of neurons permitted, for the first time on a polymeric patch-clamp device, the recording of high fidelity physiological action potentials. Microfabrication of the hybrid poly(dimethylsiloxane)-polyimide (PDMS-PI) microchip is discussed, including a two-layer PDMS processing technique resulting in minimized shrinking variations.
منابع مشابه
Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملMicrochip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput o...
متن کاملA novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons.
We report on a simple and high-yield manufacturing process for silicon planar patch-clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high-quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to re...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical microdevices
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2010