Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling
نویسندگان
چکیده
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.
منابع مشابه
Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation
Maximum likelihood estimation and likelihood ratio tests for nonlinear, non-Gaussian state-space models require numerical integration for likelihood calculations. Several methods, including Monte Carlo (MC) expectation maximization, MC likelihood ratios, direct MC integration, and particle lter likelihoods, are inef cient for the motivating problem of stage-structured population dynamics mod...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملAnalysis of Record Data from the Scaled Logistic Distribution
In this paper, we consider the estimation of the unknown parameter of the scaled logistic distribution on the basis of record values. The maximum likelihood method does not provide an explicit estimator for the scale parameter. In this article, we present a simple method of deriving an explicit estimator by approximating the likelihood function. Bayes estimator is obtained using importance samp...
متن کاملMethod of Moments Using Monte Carlo Simulation
We present a computational approach to the method of moments using Monte Carlo simulation. Simple algebraic identities are used so that all computations can be performed directly using simulation draws and computation of the derivative of the log-likelihood. We present a simple implementation using the Newton-Raphson algorithm, with the understanding that other optimization methods may be used ...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 50 شماره
صفحات -
تاریخ انتشار 2002