Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems
نویسندگان
چکیده
The stochastic collocation method [43, 1, 31, 30] has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method [28, 40, 33], primarily developed for solving parametric systems, has been recently used to deal with stochastic problems [7, 6]. In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: 1), convergence results of the approximation error; 2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O(1) to moderate dimensions O(10) and to high dimensions O(100). The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.
منابع مشابه
Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint
In this paper we develop and analyze an efficient computational method for solving stochastic optimal control problems constrained by elliptic partial differential equation (PDE) with random input data. We first prove both existence and uniqueness of the optimal solution. Regularity of the optimal solution in the stochastic space is studied in view of the analysis of stochastic approximation er...
متن کاملA Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data
In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equation (PDE) with random input data. The PDE is first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance at different values of the parameters are taken into account by assigning different weight to the samples in th...
متن کاملModel Order Reduction Techniques for Uncertainty Quantification Problems
The last few years have witnessed a tremendous development of the computational field of uncertainty quantification (UQ), which includes statistical, sensitivity and reliability analyses, stochastic or robust optimal control/design/optimization, parameter estimation, data assimilation, to name just a few. In all these problems, the solution of stochastic partial differential equations (PDEs) is...
متن کاملComparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...
متن کاملStochastic Collocation for Elliptic PDEs with random data - the lognormal case
We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014