Changes in cerebral arterial, tissue and venous oxygenation with evoked neural stimulation: implications for hemoglobin-based functional neuroimaging.
نویسندگان
چکیده
Little is known regarding the changes in blood oxygen tension (P(O2)) with changes in brain function. This work aimed to measure the blood P(O2) in surface arteries and veins as well as tissue with evoked somato-sensory stimulation in the anesthetized rat. Electrical stimulation of the forepaw induced average increases in blood flow of 44% as well as increases in the tissue P(O2) of 28%. More importantly, increases in P(O2) throughout pial arteries (resting diameters=59 to 129 microm) and pial veins (resting diameters=62 to 361 microm) were observed. The largest increases in vascular P(O2) were observed in the small veins (from 33 to 40 mm Hg) and small arteries (from 78 to 88 mm Hg). The changes in oxygen saturation (S(O2)) were calculated and the largest increases were observed in small veins (Delta=+11%) while its increase in small arteries was small (Delta=+4%). The average diameter of arterial vessels was observed to increase by 4 to 6% while that of veins was not observed to change with evoked stimulation. These findings show that the increases in arterial P(O2) contribute to the hyper-oxygenation of tissue and, mostly likely, also to the signal changes in hemoglobin-based functional imaging methods (e.g. BOLD fMRI).
منابع مشابه
Changes in Arterial Oxygen Tension with Evoked Stimulation in the Rat Somato-sensory Cortex: Implications for Quantitative fMRI
Introduction It is accepted that the BOLD fMRI signal results from changes in the amount and saturation of hemoglobin in a voxel that stem from neurophysiological changes in CBF, CBV and CMRO2 with brain activation. This sensitivity of BOLD fMRI to CMRO2 has been used to quantify the changes in CMRO2 with brain activation (1,2,3). In general, this physiological parameter has been of interest be...
متن کاملPolarographic Electrode Measures of Cerebral Tissue Oxygenation: Implications for Functional Brain Imaging
The changes in blood flow, blood volume and oxygenation that accompany focal increases in neural activity are collectively referred to as the hemodynamic response and form the basis of non-invasive neuroimaging techniques such as blood oxygen level dependent (BOLD) functional magnetic resonance imaging. A principle factor influencing blood oxygenation, the cerebral metabolic rate of oxygen cons...
متن کاملCerebral Oxygen Delivery and Consumption During Evoked Neural Activity
Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary ...
متن کاملComparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime
Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect n...
متن کاملArterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI.
Quantifying both arterial cerebral blood volume (CBV(a)) changes and total cerebral blood volume (CBV(t)) changes during neural activation can provide critical information about vascular control mechanisms, and help to identify the origins of neurovascular responses in conventional blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Cerebral blood flow (CBF), CBV(a), and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2010