Scaling of Soaring Seabirds and Implications for Flight Abilities of Giant Pterosaurs

نویسندگان

  • Katsufumi Sato
  • Kentaro Q. Sakamoto
  • Yutaka Watanuki
  • Akinori Takahashi
  • Nobuhiro Katsumata
  • Charles-André Bost
  • Henri Weimerskirch
چکیده

The flight ability of animals is restricted by the scaling effects imposed by physical and physiological factors. In comparisons of the power available from muscle and the mechanical power required to fly, it is predicted that the margin between the powers should decrease with body size and that flying animals have a maximum body size. However, predicting the absolute value of this upper limit has proven difficult because wing morphology and flight styles varies among species. Albatrosses and petrels have long, narrow, aerodynamically efficient wings and are considered soaring birds. Here, using animal-borne accelerometers, we show that soaring seabirds have two modes of flapping frequencies under natural conditions: vigorous flapping during takeoff and sporadic flapping during cruising flight. In these species, high and low flapping frequencies were found to scale with body mass (mass(-0.30) and mass(-0.18)) in a manner similar to the predictions from biomechanical flight models (mass(-1/3) and mass(-1/6)). These scaling relationships predicted that the maximum limits on the body size of soaring animals are a body mass of 41 kg and a wingspan of 5.1 m. Albatross-like animals larger than the limit will not be able to flap fast enough to stay aloft under unfavourable wind conditions. Our result therefore casts doubt on the flying ability of large, extinct pterosaurs. The largest extant soarer, the wandering albatross, weighs about 12 kg, which might be a pragmatic limit to maintain a safety margin for sustainable flight and to survive in a variable environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness

The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors i...

متن کامل

Flight in slow motion: aerodynamics of the pterosaur wing.

The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. Thes...

متن کامل

Experimental verification of dynamic soaring in albatrosses.

Dynamic soaring is a small-scale flight manoeuvre which is the basis for the extreme flight performance of albatrosses and other large seabirds to travel huge distances in sustained non-flapping flight. As experimental data with sufficient resolution of these small-scale movements are not available, knowledge is lacking about dynamic soaring and the physical mechanism of the energy gain of the ...

متن کامل

Flight speed and performance of the wandering albatross with respect to wind

Background Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reana...

متن کامل

Optimal Energy Extraction During Dynamic Jet Stream Soaring

Dynamic soaring, a technique in which horizontal wind that varies in strength or direction is used to support flight, could potentially support perpetual flight of a high performance glider in the jet stream. However, the aircraft's control systems would still require electric power. This could be extracted for example using specially designed ram air turbines (RAT). The present paper focuses o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009