Semi-supervised Learning with Penalized Probabilistic Clustering

نویسندگان

  • Zhengdong Lu
  • Todd K. Leen
چکیده

While clustering is usually an unsupervised operation, there are circumstances in which we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of out-of-sample data in a manner consistent with the prior knowledge expressed in the training set. Our starting point is probabilistic clustering based on Gaussian mixture models (GMM) of the data distribution. We express clustering preferences in the prior distribution over assignments of data points to clusters. This prior penalizes cluster assignments according to the degree with which they violate the preferences. We fit the model parameters with EM. Experiments on a variety of data sets show that PPC can consistently improve clustering results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Under Prior Knowledge with Application to Image Segmentation

This paper proposes a new approach to model-based clustering under prior knowledge. The proposed formulation can be interpreted from two different angles: as penalized logistic regression, where the class labels are only indirectly observed (via the probability density of each class); as finite mixture learning under a grouping prior. To estimate the parameters of the proposed model, we derive ...

متن کامل

Semi-supervised learning via penalized mixture model with application to microarray sample classification

MOTIVATION It is biologically interesting to address whether human blood outgrowth endothelial cells (BOECs) belong to or are closer to large vessel endothelial cells (LVECs) or microvascular endothelial cells (MVECs) based on global expression profiling. An earlier analysis using a hierarchical clustering and a small set of genes suggested that BOECs seemed to be closer to MVECs. By taking adv...

متن کامل

Penalized Probabilistic Clustering

While clustering is usually an unsupervised operation, there are circumstances in which we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of out-of-sample data in a manner consistent with the prior knowledge expressed in the training set....

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

An Efficient Learning of Constraints For Semi-Supervised Clustering using Neighbour Clustering Algorithm

Data mining is the process of finding the previously unknown and potentially interesting patterns and relation in database. Data mining is the step in the knowledge discovery in database process (KDD) .The structures that are the outcome of the data mining process must meet certain condition so that these can be considered as knowledge. These conditions are validity, understandability, utility,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004