Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania

نویسندگان

  • Ernest William Mauya
  • Endre Hofstad Hansen
  • Terje Gobakken
  • Ole Martin Bollandsås
  • Rogers Ernest Malimbwi
  • Erik Næsset
چکیده

BACKGROUND Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. RESULTS The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m2. The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. CONCLUSIONS This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Pulse Density on Digital Terrain Models and Canopy Metrics Using Airborne Laser Scanning in a Tropical Rainforest

Airborne laser scanning (ALS) is increasingly being used to enhance the accuracy of biomass estimates in tropical forests. Although the technological development of ALS instruments has resulted in ever-greater pulse densities, studies in boreal and sub-boreal forests have shown consistent results even at relatively small pulse densities. The objective of the present study was to assess the effe...

متن کامل

Sparse Density, Leaf-Off Airborne Laser Scanning Data in Aboveground Biomass Component Prediction

The demand for cost-efficient forest aboveground biomass (AGB) prediction methods is growing worldwide. The National Land Survey of Finland (NLS) began collecting airborne laser scanning (ALS) data throughout Finland in 2008 to provide a new high-detailed terrain elevation model. Similar data sets are being collected in an increasing number of countries worldwide. These data sets offer great po...

متن کامل

Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System

Applications of unmanned aircraft systems (UASs) to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference ...

متن کامل

Guidelines for Sampling Aboveground Biomass and Carbon in Mature Central Hardwood Forests

—As impacts of climate change expand, determining accurate measures of forest biomass and associated carbon storage in forests is critical. We present sampling guidance for 12 combinations of percent error, plot size, and alpha levels by disturbance regime to help determine the optimal size of plots to estimate aboveground biomass and carbon in an old-growth Central Hardwood forest. The analyse...

متن کامل

Impacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest

Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015