Learning Image Descriptors with the Boosting-Trick
نویسندگان
چکیده
In this paper we apply boosting to learn complex non-linear local visual feature representations, drawing inspiration from its successful application to visual object detection. The main goal of local feature descriptors is to distinctively represent a salient image region while remaining invariant to viewpoint and illumination changes. This representation can be improved using machine learning, however, past approaches have been mostly limited to learning linear feature mappings in either the original input or a kernelized input feature space. While kernelized methods have proven somewhat effective for learning non-linear local feature descriptors, they rely heavily on the choice of an appropriate kernel function whose selection is often difficult and non-intuitive. We propose to use the boosting-trick to obtain a non-linear mapping of the input to a high-dimensional feature space. The non-linear feature mapping obtained with the boosting-trick is highly intuitive. We employ gradient-based weak learners resulting in a learned descriptor that closely resembles the well-known SIFT. As demonstrated in our experiments, the resulting descriptor can be learned directly from intensity patches achieving state-of-the-art performance.
منابع مشابه
Performance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملColour Interest Points for Image Retrieval
In image retrieval scenarios, many methods use interest point detection at an early stage to find regions in which descriptors are calculated. Finding salient locations in image data is crucial for these tasks. Observing that most current methods use only the luminance information of the images, we investigate the use of colour information in interest point detection. Based on the Harris corner...
متن کاملBoosting VLAD with Supervised Dictionary Learning and High-Order Statistics
Recent studies show that aggregating local descriptors into super vector yields effective representation for retrieval and classification tasks. A popular method along this line is vector of locally aggregated descriptors (VLAD), which aggregates the residuals between descriptors and visual words. However, original VLAD ignores high-order statistics of local descriptors and its dictionary may n...
متن کاملBoosting as a Regularized Path to a Maximum Margin Classifier
In this paper we study boosting methods from a new perspective. We build on recent work by Efron et al. to show that boosting approximately (and in some cases exactly) minimizes its loss criterion with an l1 constraint on the coefficient vector. This helps understand the success of boosting with early stopping as regularized fitting of the loss criterion. For the two most commonly used criteria...
متن کاملDriving Digital Rock towards Machine Learning: predicting permeability with Gradient Boosting and Deep Neural Networks
We present a research study aimed at testing of applicability of machine learning techniques for prediction of permeability of digitized rock samples. We prepare a training set containing 3D images of sandstone samples imaged with X-ray microtomography and corresponding permeability values simulated with Pore Network approach. We also use Minkowski functionals and Deep Learning-based descriptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012