Lattice Based Cryptography for Beginners
نویسندگان
چکیده
The purpose of this lecture note is to introduce lattice based cryptography, which is thought to be a cryptosystem of post-quantum age. We have tried to give as many details possible specially for novice on the subject. Something may be trivial to an expert but not to a novice. Many fundamental problems about lattice are thought to be hard even against quantum computer, compared to factorization problem which can be solved easily with quantum computer, via the celebrated Shor factorization quantum algorithm. The first part of our presentation is based on slides of Christ Peikert 2013 Bonn lecture (crypt@b-it2013). We, more or less, give somewhat detailed explanation of Professor Peikert’s lecture slides. We unfortunately could not attend his Bonn class. We are afraid that there are many mistakes in this note; if any, they are due to our misunderstanding of the material. Part II of our lecture note is on ring LWE, based on the paper “A tool-kit for Ring-LWE Cryptography” by Lyubashevsky, Peikert and Regev. Part III is about multilinear maps together with cryptanalysis of GGH map due to Hu and Jia. Our presentation follows professor Steinfeld’s lecture slides on GGHLite, and the paper by Yupu Hu and Huiwen Jia. When you read this lecture note, the corresponding original paper should be accompanied. We thank professor Jung Hee Cheon for introducing the subject and asking Dong Pyo Chi to give a lecture on the subject at the department of mathematics in Seoul National University. We also thank Hyeongkwan Kim for many helps, especially many corrections and improvements of the manuscript during the 2015 Summer session at UNIST. We also thank the students who took the classes at SNU and UNIST. The lecture was given by a novice for novice, so many mistakes are unavoidable. If the reader lets us know any errors, we will very much appreciate it.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملOn the design and security of a lattice-based threshold secret sharing scheme
In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملProofs in Cryptography∗
We give a brief overview of proofs in cryptography at a beginners level. We briefly cover a general way to look at proofs in cryptography and briefly compare the requirements to traditional reductions in computer science. We then look at two security paradigms, indistinguishability and simulation based security. We also describe the security models for Secret Key and Public Key systems with app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015