Detailed Study of the Influence of InGaAs Matrix on the Strain Reduction in the InAs Dot-In-Well Structure
نویسندگان
چکیده
InAs/InGaAs dot-in-well (DWELL) structures have been investigated with the systematically varied InGaAs thickness. Both the strained buffer layer (SBL) below the dot layer and the strain-reducing layer (SRL) above the dot layer were found to be responsible for the redshift in photoluminescence (PL) emission of the InAs/InGaAs DWELL structure. A linear followed by a saturation behavior of the emission redshift was observed as a function of the SBL and SRL thickness, respectively. The PL intensity is greatly enhanced by applying both of the SRL and SBL. Finite element analysis simulation and transmission electron microscopy (TEM) measurement were carried out to analyze the strain distribution in the InAs QD and the InGaAs SBL. The results clearly indicate the strain reduction in the QD induced by the SBL, which are likely the main cause for the emission redshift.
منابع مشابه
Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes
In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملOptimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کاملCoupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser
Data are presented showing that, besides the improvement in carrier collection, it is advantageous to locate strain-matching auxiliary InGaAs layers @quantum wells ~QWs!# within tunneling distance of a single-quantum-dot ~QD! layer of an AlGaAs–GaAs–InGaAs–InAs QD heterostructure laser to realize also smaller size QDs of greater density and uniformity. The QD density is changed from 2310/cm for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016