Neural net architectures for temporal sequence processing
نویسنده
چکیده
I present a general taxonomy of neural net architectures for processing time-varying patterns. This taxonomy subsumes many existing architectures in the literature, and points to several promising architectures that have yet to be examined. Any architecture that processes timevarying patterns requires two conceptually distinct components: a short-term memory that holds on to relevant past events and an associator that uses the short-term memory to classify or predict. My taxonomy is based on a characterization of short-term memory models along the dimensions of form, content, and adaptability. Experiments on predicting future values of a financial time series (US dollar–Swiss franc exchange rates) are presented using several alternative memory models. The results of these experiments serve as a baseline against which more sophisticated architectures can be compared. Neural networks have proven to be a promising alternative to traditional techniques for nonlinear temporal prediction tasks (e.g., Curtiss, Brandemuehl, & Kreider, 1992; Lapedes & Farber, 1987; Weigend, Huberman, & Rumelhart, 1992). However, temporal prediction is a particularly challenging problem because conventional neural net architectures and algorithms are not well suited for patterns that vary over time. The prototypical use of neural nets is in structural pattern recognition. In such a task, a collection of features—visual, semantic, or otherwise—is presented to a network and the network must categorize the input feature pattern as belonging to one or more classes. For example, a network might be trained to classify animal species based on a set of attributes describing living creatures such as “has tail”, “lives in water”, or “is carnivorous”; or a network could be trained to recognize visual patterns over a two-dimensional pixel array as a letter in {A,B, . . . , Z}. In such tasks, the network is presented with all relevant information simultaneously. In contrast, temporal pattern recognition involves processing of patterns that evolve over time. The appropriate response at a particular point in time depends not only on the current input, but potentially all previous inputs. This is illustrated in Figure 1, which shows the basic framework for a temporal prediction problem. I assume that time is quantized into discrete steps, a sensible assumption because many time series of interest are intrinsically discrete, and continuous series can be sampled at a fixed interval. The input at time t is denoted x(t). For univariate series, this input
منابع مشابه
The gamma model--A new neural model for temporal processing
In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided. Only current signal values are presented to the neural net, that adapts its own internal memory ...
متن کاملNeural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کاملNonmonotone BFGS-trained recurrent neural networks for temporal sequence processing
In this paper we propose a nonmonotone approach to recurrent neural networks training for temporal sequence processing applications. This approach allows learning performance to deteriorate in some iterations, nevertheless the network’s performance is improved over time. A self-scaling BFGS is equipped with an adaptive nonmonotone technique that employs approximations of the Lipschitz constant ...
متن کاملContext in temporal sequence processing: a self-organizing approach and its application to robotics
A self-organizing neural net for learning and recall of complex temporal sequences is developed and applied to robot trajectory planning. We consider trajectories with both repeated and shared states. Both cases give rise to ambiguities during reproduction of stored trajectories which are resolved via temporal context information. Feedforward weights encode spatial features of the input traject...
متن کاملGated Fast Weights for Associative Retrieval
We improve previous end-to-end differentiable neural networks (NNs) with fast weight memories. A gate mechanism updates fast weights at every time step of a sequence through two separate outer-product-based matrices generated by slow parts of the net. The system is trained on a complex sequence to sequence variation of the Associative Retrieval Problem with roughly 70 times more temporal memory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994