Neural signatures of perceptual inference.

نویسندگان

  • William Sedley
  • Phillip E Gander
  • Sukhbinder Kumar
  • Christopher K Kovach
  • Hiroyuki Oya
  • Hiroto Kawasaki
  • Matthew A Howard
  • Timothy D Griffiths
چکیده

Generative models, such as predictive coding, posit that perception results from a combination of sensory input and prior prediction, each weighted by its precision (inverse variance), with incongruence between these termed prediction error (deviation from prediction) or surprise (negative log probability of the sensory input). However, direct evidence for such a system, and the physiological basis of its computations, is lacking. Using an auditory stimulus whose pitch value changed according to specific rules, we controlled and separated the three key computational variables underlying perception, and discovered, using direct recordings from human auditory cortex, that surprise due to prediction violations is encoded by local field potential oscillations in the gamma band (>30 Hz), changes to predictions in the beta band (12-30 Hz), and that the precision of predictions appears to quantitatively relate to alpha band oscillations (8-12 Hz). These results confirm oscillatory codes for critical aspects of generative models of perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seeing without Knowing: Neural Signatures of Perceptual Inference in the Absence of Report

Every day, we experience a rich and complex visual world. Our brain constantly translates meaningless fragmented input into coherent objects and scenes. However, our attentional capabilities are limited, and we can only report the few items that we happen to attend to. So what happens to items that are not cognitively accessed? Do these remain fragmentary and meaningless? Or are they processed ...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

Perceptual inference predicts contextual modulations of sensory responses.

Sensory receptive fields (RFs) vary as a function of stimulus properties and measurement methods. Previous stimuli or surrounding stimuli facilitate, suppress, or change the selectivity of sensory neurons' responses. Here, we propose that these spatiotemporal contextual dependencies are signatures of efficient perceptual inference and can be explained by a single neural mechanism, input targete...

متن کامل

Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics

Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • eLife

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016