Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

نویسندگان

  • Oleksandr V Popovych
  • Borys Lysyansky
  • Michael Rosenblum
  • Arkady Pikovsky
  • Peter A Tass
چکیده

High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson's disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multisite Delayed Feedback for Electrical Brain Stimulation

Demand-controlled deep brain stimulation (DBS) appears to be a promising approach for the treatment of Parkinson's disease (PD) as revealed by computational, pre-clinical and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation setup might help to reduce the amount of stimul...

متن کامل

Closed- and Open-loop Deep Brain Stimulation: Methods, Challenges, Current and Future Aspects

Deep brain stimulation (DBS) is known as the most effective technique in the treatment of neurodegenerative diseases, especially Parkinson disease (PD) and epilepsy. Relative healing and effective control of disease symptoms are the most significant reasons for the tangible tendency in use and development of this technology. Nevertheless, more cellular and molecular investigations are required ...

متن کامل

Failure of Delayed Feedback Deep Brain Stimulation for Intermittent Pathological Synchronization in Parkinson’s Disease

Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well a...

متن کامل

Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach

Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for ...

متن کامل

Need for multiple biomarkers to adjust parameters of closed-loop deep brain stimulation for Parkinson's disease

Closed-loop deep brain stimulation (DBS): DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders. Various efforts to improve the clinical outcomes of the procedure have been previously made. Several factors affect the DBS clinical outcomes such as lead position, programming technique, and surgical complications (Morishita et al., 2010). Curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017