An Interval Partitioning Approach for Continuous Constrained Optimization

نویسندگان

  • Chandra Sekhar Pedamallu
  • Linet Özdamar
  • Tibor Csendes
چکیده

Constrained Optimization Problems (COP’s) are encountered in many scientific fields concerned with industrial applications such as kinematics, chemical process optimization, molecular design, etc. When non-linear relationships among variables are defined by problem constraints resulting in non-convex feasible sets, the problem of identifying feasible solutions may become very hard. Consequently, finding the location of the global optimum in the COP is more difficult as compared to bound-constrained global optimization problems. This chapter proposes a new interval partitioning method for solving the COP. The proposed approach involves a new subdivision direction selection method as well as an adaptive search tree framework where nodes (boxes defining different variable domains) are explored using a restricted hybrid depth-first and best-first branching strategy. This hybrid approach is also used for activating local search in boxes with the aim of identifying different feasible stationary points. The proposed search tree management approach improves the convergence speed of the interval partitioning method that is also supported by the new parallel subdivision direction selection rule (used in selecting the variables to be partitioned in a given box). This rule targets directly the uncertainty degrees of constraints (with respect to feasibility) and the uncertainty degree of the objective function (with respect to optimality). Reducing these uncertainties as such results in the early and reliable detection of infeasible and sub-optimal boxes, thereby diminishing the number of boxes to be assessed. Consequently, chances of identifying local stationary points during the early stages of the search increase. The effectiveness of the proposed interval partitioning algorithm is illustrated on several practical application problems and compared with professional commercial local and global solvers. Empirical results show that the presented new approach is as good as available COP solvers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach

This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...

متن کامل

Trim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV

Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...

متن کامل

An Optimization via Simulation approach for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problems

In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current re...

متن کامل

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning

In this paper, we present a constraint-partitioning approach for finding local optimal solutions of large-scale mixed-integer nonlinear programming problems (MINLPs). Based on our observation that MINLPs in many engineering applications have highly structured constraints, we propose to partition these MINLPs by their constraints into subproblems, solve each subproblem by an existing solver, and...

متن کامل

Solving Constrained Nonlinear Optimization Problems Through Constraint Partitioning

In this paper, we study efficient temporal planning based on a continuous and differentiable nonlinear programming transformation of the planning problem. Based on the observation that many large planning problems have constraint locality, we have previously proposed the constraint partitioning approach that utilizes the constraint structure by partitioning the constraints of a planning problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006