Detection boundary and Higher Criticism approach for rare and weak genetic effects
نویسندگان
چکیده
Genome-wide association studies (GWAS) have identified many genetic factors underlying complex human traits. However, these factors have explained only a small fraction of these traits’ genetic heritability. It is argued that many more genetic factors remain undiscovered. These genetic factors likely are weakly associated at the population level and sparsely distributed across the genome. In this paper, we adapt the recent innovations on Tukey’s Higher Criticism (Tukey [The Higher Criticism (1976) Princeton Univ.]; Donoho and Jin [Ann. Statist. 32 (2004) 962–994]) to SNP-set analysis of GWAS, and develop a new theoretical framework in large-scale inference to assess the joint significance of such rare and weak effects for a quantitative trait. In the core of our theory is the so-called detection boundary, a curve in the two-dimensional phase space that quantifies the rarity and strength of genetic effects. Above the detection boundary, the overall effects of genetic factors are strong enough for reliable detection. Below the detection boundary, the genetic factors are simply too rare and too weak for reliable detection. We show that the HC-type methods are optimal in that they reliably yield detection once the parameters of the genetic effects fall above the detection boundary and that many commonly used SNP-set methods are suboptimal. The superior performance of the HC-type approach is demonstrated through simulations and the analysis of a GWAS data set of Crohn’s disease.
منابع مشابه
Higher criticism approach to detect rare variants using whole genome sequencing data
Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we d...
متن کاملHigher Criticism for Large-Scale Inference, Especially for Rare and Weak Effects
In modern high-throughput data analysis, researchers perform a large number of statistical tests, expecting to find perhaps a small fraction of significant effects against a predominantly null background. Higher Criticism (HC) was introduced to determine whether there are any nonzero effects; more recently, it was applied to feature selection, where it provides a method for selecting useful pre...
متن کاملInnovated Higher Criticism for Detecting Sparse Signals in Correlated Noise
Higher Criticism is a method for detecting signals that are both sparse and weak. Although first proposed in cases where the noise variables are independent, Higher Criticism also has reasonable performance in settings where those variables are correlated. In this paper we show that, by exploiting the nature of the correlation, performance can be improved by using a modified approach which expl...
متن کاملHypothesis Testing for High-dimensional Sparse Binary Regression.
In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which do...
متن کاملDamage Detection of Bridge by Rayleigh-Ritz Method
As a result of environmental and accidental actions, damage occurs in structures. The early detection of any defect can be achieved by regular inspection and condition assessment. In this way, the safety and reliability of structures can be increased. This paper is devoted to propose a new and effective method for detecting, locating, and quantifying beam-like structures. This method is based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014