Prediction of Student’s Performance based on Incremental Learning

نویسندگان

  • Pallavi Kulkarni
  • Roshani Ade
چکیده

It is necessary to use Student dataset in order to analyze student’s performance for future improvements in study methods and overall curricular. Incremental learning methods are becoming popular nowadays since amount of data and information is rising day by day. There is need to update classifier in order to scale up learning to manage more training data. Incremental learning technique is a way in which data is processed in chunks and the results are merged so as to possess less memory. For this reason, in this paper, four classifiers that can run incrementally: the Naive Bayes, KStar, IBK and Nearest neighbor (KNN) have been compared. It is observed that nearest neighbor algorithm gives better accuracy compared to others if applied on Student Evaluation dataset which has been used. General Terms Incremental learning, Classification

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions

In this paper, we proposed a new cognitive modeling approach: Instructional Factors Analysis Model (IFM). It belongs to a class of Knowledge-Component-based cognitive models. More specifically, IFM is targeted for modeling student’s performance when multiple types of instructional interventions are involved and some of them may not generate a direct observation of students’ performance. We comp...

متن کامل

Adaptive Bayes for a Student Modeling Prediction Task Based on Learning Styles

We present Adaptive Bayes, an adaptive incremental version of Naïve Bayes, to model a prediction task based on learning styles in the context of an Adaptive Hypermedia Educational System. Since the student’s preferences can change over time, this task is related with a problem known as concept drift in the machine learning community. For this class of problems an adaptive predictive model, able...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Prediction of Academic Self-efficacy Based on Self-regulated Learning Strategies, Metacognition Strategies And Goal-Progress Orientation In Students

The purpose of this study was to determine the prediction of academic self-efficacy based on self-regulated learning strategies, metacognition strategies and goal-progress orientation in students of Islamic Azad University branch Ahvaz. This research is correlational. For this purpose, the community of students, 400 people (180 boys and 180 girls) was selected based on stratified random samplin...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014