Semi-supervised Clustering on Heterogeneous Information Networks

نویسندگان

  • Chen Luo
  • Wei Pang
  • Zhe Wang
چکیده

Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information networks, which include multi-typed objects and links and may contain more useful semantic information. The major challenge in the clustering task here is how to handle multi-relations and diverse semantic meanings in heterogeneous networks. In order to deal with this challenge, we introduce the concept of relation-path to measure the similarity between two data objects of the same type. Thereafter, we make use of the labeled information to extract different weights for all relation-paths. Finally, we propose SemiRPClus, a complete framework for semi-supervised learning in heterogeneous networks. Experimental results demonstrate the distinct advantages in effectiveness and efficiency of our framework in comparison with the baseline and some state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Clustering Heterogeneous Data with Mutual Semi-supervision

We propose a new methodology for clustering data comprising multiple domains or parts, in such a way that the separate domains mutually supervise each other within a semi-supervised learning framework. Unlike existing uses of semi-supervised learning, our methodology does not assume the presence of labels from part of the data, but rather, each of the different domains of the data separately un...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-supervised information-maximization clustering

Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the information-maximization principle. The proposed method is an extension of a previous unsupervised information-maximization clustering algorithm based on squared-loss mutual information to effectively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014