Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function.
نویسندگان
چکیده
Nuclear protein peptidyl-prolyl isomerase Pin1-mediated prolyl isomerization is an essential and novel regulatory mechanism for protein phosphorylation. Therefore, tight regulation of Pin1 localization and catalytic activity is crucial for its normal nuclear functions. Pin1 is commonly dysregulated during oncogenesis and likely contributes to these pathologies; however, the mechanism(s) by which Pin1 catalytic activity and nuclear localization are increased is unknown. Here we demonstrate that mixed-lineage kinase 3 (MLK3), a MAP3K family member, phosphorylates Pin1 on a Ser138 site to increase its catalytic activity and nuclear translocation. This phosphorylation event drives the cell cycle and promotes cyclin D1 stability and centrosome amplification. Notably, Pin1 pSer138 is significantly up-regulated in breast tumors and is localized in the nucleus. These findings collectively suggest that the MLK3-Pin1 signaling cascade plays a critical role in regulating the cell cycle, centrosome numbers, and oncogenesis.
منابع مشابه
Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation.
Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl ter...
متن کاملPin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects
ADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated. We demonstrate that the phosphorylation-dependent prolyl-...
متن کاملTargeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes.
AIM Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. METHODS AND RESULTS In human aortic endothelial cells (HAECs) exposed to high glucose, up...
متن کاملA hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1.
The monoclonal antibody MPM-2 recognizes a subset of M phase phosphoproteins in a phosphorylation-dependent manner. It is believed that phosphorylation at MPM-2 antigenic sites could regulate mitotic events since most of the MPM-2 antigens identified to date have M phase functions. In addition, many of these proteins are substrates of the mitotic regulator Pin1, a peptidyl-prolyl isomerase whic...
متن کاملThe Peptidyl-Isomerase Pin1 Regulates p27 Expression through Inhibition of Forkhead Box O Tumor Suppressors
The Forkhead box O (FOXO) protein family is an evolutionarily conserved subclass of transcription factors recently identified as bona fide tumor suppressors. Preventing the accumulation of cellular damage due to oxidative stress is thought to underlie its tumor-suppressive role. Oxidative stress, in turn, also feedback controls FOXO4 function. Regulation of this process, however, is poorly unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 21 شماره
صفحات -
تاریخ انتشار 2012