Mechanical Programming of Soft Actuators by Varying Fiber Angle

نویسندگان

  • Fionnuala Connolly
  • Panagiotis Polygerinos
  • Conor J. Walsh
  • Katia Bertoldi
چکیده

In this work we investigate the influence of fiber angle on the deformation of fiber-reinforced soft fluidic actuators. We demonstrate that, by simply varying the fiber angle, we can tune the actuators to achieve a wide range of motions, including axial extension, radial expansion, and twisting. We investigate the relationship between fiber angle and actuator deformation by performing finite element simulations for actuators with a range of different fiber angles, and we verify the simulation results by experimentally characterizing the actuators. By combining actuator segments in series, we can achieve combinations of motions tailored to specific tasks. We demonstrate this by using the results of simulations of separate actuators to design a segmented wormlike soft robot capable of propelling itself through a tube and performing an orientation-specific peg insertion task at the end of the tube. Understanding the relationship between fiber angle and motion of these soft fluidic actuators enables rapid exploration of the design space, opening the door to the iteration of exciting soft robot concepts such as flexible and compliant endoscopes, pipe inspection devices, and assembly line robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Effects on Nonlinear Vibration of FGM Plates Coupled with Piezoelectric Actuators

An analytical solution for a sandwich circular FGM plate coupled with piezoelectric layers under one-dimension heat conduction is presented in this paper. A nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations. By adding an incremental dynamic state to the pre-vibration state, the differential equations are derived. The role of thermal en...

متن کامل

Stability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators

This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...

متن کامل

Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose ...

متن کامل

Hysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation

In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...

متن کامل

Automatic design of fiber-reinforced soft actuators for trajectory matching.

Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015