A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage*

نویسندگان

  • François-Michel Boisvert
  • Yun Wah Lam
  • Douglas Lamont
  • Angus I. Lamond
چکیده

A major challenge in cell biology is to identify the subcellular distribution of proteins within cells and to characterize how protein localization changes under different cell growth conditions and in response to stress and other external signals. Protein localization is usually determined either by microscopy or by using cell fractionation combined with protein blotting techniques. Both these approaches are intrinsically low throughput and limited to the analysis of known components. Here we use mass spectrometry-based proteomics to provide an unbiased, quantitative, and high throughput approach for measuring the subcellular distribution of the proteome, termed "spatial proteomics." The spatial proteomics method analyzes a whole cell extract created by recombining differentially labeled subcellular fractions derived from cells in which proteins have been mass-labeled with heavy isotopes. This was used here to measure the relative distribution between cytoplasm, nucleus, and nucleolus of over 2,000 proteins in HCT116 cells. The data show that, at steady state, the proteome is predominantly partitioned into specific subcellular locations with only a minor subset of proteins equally distributed between two or more compartments. Spatial proteomics also facilitates a proteome-wide comparison of changes in protein localization in response to a wide range of physiological and experimental perturbations, shown here by characterizing dynamic changes in protein localization elicited during the cellular response to DNA damage following treatment of HCT116 cells with etoposide. DNA damage was found to cause dissociation of the proteasome from inhibitory proteins and assembly chaperones in the cytoplasm and relocation to associate with proteasome activators in the nucleus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p53-Dependent subcellular proteome localization following DNA damage

The nucleolus is involved in regulating several aspects of stress responses and cell cycle arrest through the tumor suppressor p53. Under normal conditions, p53 is a short-lived protein that is present in cells at a barely detectable level. Upon exposure of cells to various forms of exogenous stress, such as DNA damage, there is a stabilization of p53 which is then responsible for an ensuing ca...

متن کامل

A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage*□S

A major challenge in cell biology is to identify the subcellular distribution of proteins within cells and to characterize how protein localization changes under different cell growth conditions and in response to stress and other external signals. Protein localization is usually determined either by microscopy or by using cell fractionation combined with protein blotting techniques. Both these...

متن کامل

I-3: Human Y Chromosome Proteome Project 2012 Update

The Human Genome Project has generated a blueprint for the approximately 20,300 gene-encoded proteins potentially active in any of 230 cell types that make up the human body (human proteome). However, based on the UniProtKB/Swiss-Prot database content, about 6000 of at the protein level; for many others, there is very little information related to protein function, abundance, subcellular locali...

متن کامل

Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes.

ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation protocol to interrogate the proteome of i...

متن کامل

Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning

Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010