N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly.

نویسندگان

  • T M Trask
  • T M Ritty
  • T Broekelmann
  • C Tisdale
  • R P Mecham
چکیده

Aggregation of fibrillin molecules via disulphide bonds is postulated to be an early step in microfibril assembly. By expressing fragments of fibrillin 1 and fibrillin 2 in a mammalian expression system, we found that the N-terminal region of each protein directs the formation of homodimers and that disulphide bonds stabilize this interaction. A large fragment of fibrillin 1 containing much of the region downstream from the N-terminus remained as a monomer when expressed in the same cell system, indicating that this region of the protein lacks dimerization domains. This finding also confirms that the overexpression of fibrillin fragments does not in itself lead to spurious dimer formation. Pulse-chase analysis demonstrated that dimer formation occurred intracellularly, suggesting that the process of fibrillin aggregation is initiated early after biosynthesis of the molecules. These findings also implicate the N-terminal region of fibrillin 1 and fibrillin 2 in directing the formation of a dimer intermediate that aggregates to form the functional microfibril.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the Fibrillin-1 N-Terminal Domains Suggests that Heparan Sulfate Regulates the Early Stages of Microfibril Assembly

The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-termi...

متن کامل

Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly.

Microfibrils are essential elements in elastic and nonelastic tissues contributing to homeostasis and growth factor regulation. Fibrillins form the core of these multicomponent assemblies. Various human genetic disorders, the fibrillinopathies, arise from mutations in fibrillins and are frequently associated with aberrant microfibril assembly. These disorders include Marfan syndrome, Weill-Marc...

متن کامل

Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly.

Fibrillin-1 assembly into microfibrils and elastic fiber formation involves interactions with glycosaminoglycans. We have used BIAcore technology to investigate fibrillin-1 interactions with heparin and with heparin saccharides that are analogous to S-domains of heparan sulfate. We have identified four high affinity heparin-binding sites on fibrillin-1, localized three of these sites, and defin...

متن کامل

Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta.

Control of the bioavailability of the growth factor TGFbeta is essential for tissue formation and homeostasis, yet precisely how latent TGFbeta is incorporated into the extracellular matrix is unknown. Here, we show that deposition of a large latent TGFbeta complex (LLC), which contains latent TGFbeta-binding protein 1 (LTBP-1), is directly dependent on the pericellular assembly of fibrillin mi...

متن کامل

1H, 13C and 15N assignments of the four N-terminal domains of human fibrillin-1

Fibrillins are extracellular, disulphide-rich glycoproteins that form 10-12 nm diameter microfibrils in connective tissues. They are found in the majority of higher animals, from jellyfish to humans. Fibrillin microfibrils confer properties of elasticity and strength on connective tissue and regulate growth factor availability in the extracellular matrix (ECM). Mutations in FBN1, the human gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 340 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1999