Conditional CycleGAN for Attribute Guided Face Image Generation
نویسندگان
چکیده
State-of-the-art techniques in Generative Adversarial Networks (GANs) such as cycleGAN is able to learn the mapping of one image domain X to another image domain Y using unpaired image data. We extend the cycleGAN to Conditional cycleGAN such that the mapping from X to Y is subjected to attribute condition Z. Using face image generation as an application example, where X is a low resolution face image, Y is a high resolution face image, and Z is a set of attributes related to facial appearance (e.g. gender, hair color, smile), we present our method to incorporate Z into the network, such that the hallucinated high resolution face image Y ′ not only satisfies the low resolution constrain inherent in X , but also the attribute condition prescribed by Z. Using face feature vector extracted from face verification network as Z, we demonstrate the efficacy of our approach on identitypreserving face image super-resolution. Our approach is general and applicable to high-quality face image generation where specific facial attributes can be controlled easily in the automatically generated results.
منابع مشابه
Convolutional Network for Attribute-driven and Identity-preserving Human Face Generation
This paper focuses on the problem of generating human face pictures from specific attributes. The existing CNN-based face generation models, however, either ignore the identity of the generated face or fail to preserve the identity of the reference face image. Here we address this problem from the view of optimization, and suggest an optimization model to generate human face with the given attr...
متن کاملSemi-supervised FusedGAN for Conditional Image Generation
We present FusedGAN, a deep network for conditional image synthesis with controllable sampling of diverse images. Fidelity, diversity and controllable sampling are the main quality measures of a good image generation model. Most existing models are insufficient in all three aspects. The FusedGAN can perform controllable sampling of diverse images with very high fidelity. We argue that controlla...
متن کاملFace Transfer with Generative Adversarial Network
Face transfer animates the facial performances of the character in the target video by a source actor. Traditional methods are typically based on face modeling. We propose an endto-end face transfer method based on Generative Adversarial Network. Specifically, we leverage CycleGAN to generate the face image of the target character with the corresponding head pose and facial expression of the so...
متن کاملCycleGAN, a Master of Steganography
CycleGAN [Zhu et al., 2017] is one recent successful approach to learn a transformation between two image distributions. In a series of experiments, we demonstrate an intriguing property of the model: CycleGAN learns to “hide” information about a source image into the images it generates in a nearly imperceptible, highfrequency signal. This trick ensures that the generator can recover the origi...
متن کاملAugmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data
Learning inter-domain mappings from unpaired data can improve performance in structured prediction tasks, such as image segmentation, by reducing the need for paired data. CycleGAN was recently proposed for this problem, but critically assumes the underlying inter-domain mapping is approximately deterministic and one-to-one. This assumption renders the model ineffective for tasks requiring flex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.09966 شماره
صفحات -
تاریخ انتشار 2017