Graph Optimization Using Fractal Decomposition With Application to Cooperative Routing Problems
نویسندگان
چکیده
We introduce a method of hierarchically decomposing graph optimization problems to obtain approximate solutions with low computation. The method uses a partition on the graph to convert the original problem to a high level problem and several lower level problems. On each level, the resulting problems are in exactly the same form as the original one, so they can be further decomposed. In this way, the problems become fractal in nature. We use best-case and worst-case instances of the decomposed problems to establish upper and lower bounds on the optimal criteria, and these bounds are achieved with significantly less computation than what is required to solve the original problem. We show that as the number of hierarchical levels increases, the computational complexity approaches O(n) at the expense of looser approximation bounds. For regular lattice graphs, we provide constant factor bounds on the approximation error. We demonstrate the fractal decomposition method on three example problems related to cooperative routing: shortest path matrix, maximum flow matrix, and cooperative search. Large-scale simulations show that this fractal decomposition method is computationally fast and can yield good results for practical problems.
منابع مشابه
Graph Optimization Using Fractal Decomposition
We introduce a method of hierarchically decomposing graph optimization problems to obtain approximate solutions with low computation. The method uses a partition on the graph to convert the original problem to a high level problem and several lower level problems. On each level, the resulting problems are in exactly the same form as the original one, so they can be further decomposed. In this w...
متن کاملSolving a bi-objective location routing problem by a NSGA-II combined with clustering approach: application in waste collection problem
It is observed that the separated design of location for depots and routing for servicing customers often reach a suboptimal solution. So, solving location and routing problem simultaneously could achieve better results. In this paper, waste collection problem is considered with regard to economic and societal objective functions. A non-dominated sorting genetic algorithm (NSGA-II) is used to l...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملThe Special Application of Vehicle Routing Problem with Uncertainty Travel Times: Locomotive Routing Problem
This paper aims to study the locomotive routing problem (LRP) which is one of the most important problems in railroad scheduling in view of involving expensive assets and high cost of operating locomotives. This problem is assigning a fleet of locomotives to a network of trains to provide sufficient power to pull them from their origins to destinations by satisfying a rich set of operational con...
متن کاملA combinatorial optimization algorithm for solving the branchwidth problem
In this paper, we consider the problem of computing an optimal branch decomposition of a graph. Branch decompositions and branchwidth were introduced by Robertson and Seymour in their series of papers that proved the Graph Minors Theorem. Branch decompositions have proven to be useful in solving many NP-hard problems, such as the traveling salesman, independent set, and ring routing problems, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007