Melatonin receptor (MT1) knockout mice display depression-like behaviors and deficits in sensorimotor gating.
نویسندگان
چکیده
Although critical for transducing seasonal information, melatonin has also been implicated in several physiological systems, as well as the regulation of behavioral and cognitive processes. Therefore, we investigated the neurobehavioral effects of mice missing the type 1 melatonin receptor (MT1). Male and female MT1 knockout (MT1-/-) and wild-type (WT) mice were tested in the acoustic startle/prepulse inhibition (PPI), open field and Porsolt forced swim tests. Male and female MT1-/- mice displayed dramatically impaired prepulse inhibition in the acoustic startle response. Female WT mice were more active in the open field than WT males. However, male and female MT1-/- mice did not differ in total locomotor activity. WT animals spent significantly more time in the center of the arena (a behavioral outcome associated with reduced anxiety-like behavior) than MT1-/- mice. Also, the sex difference between male and female WT mice in the amount of time spent in the center versus periphery was not observed among MT1-/- mice. Both male and female MT1-/- mice significantly increased the time spent immobile in the forced swim test, an indication of depressed-like behavior. The lifetime lack of MT1 signaling contributes to behavioral abnormalities including impairments in sensorimotor gating and increases in depressive-like behaviors. Taken together, MT1 receptor signaling may be important for normal brain and behavioral function.
منابع مشابه
Melancholic-Like Behaviors and Circadian Neurobiological Abnormalities in Melatonin MT1 Receptor Knockout Mice
BACKGROUND Melancholic depression, described also as endogenous depression, is a mood disorder with distinctive specific psychopathological features and biological homogeneity, including anhedonia, circadian variation of mood, psychomotor activation, weight loss, diurnal cortisol changes, and sleep disturbances. Although several hypotheses have been proposed, the etiology of this disorder is st...
متن کاملHistamine H3 Receptor Regulates Sensorimotor Gating and Dopaminergic Signaling in the Striatum.
The brain histamine system has been implicated in regulation of sensorimotor gating deficits and in Gilles de la Tourette syndrome. Histamine also regulates alcohol reward and consumption via H3 receptor (H3R), possibly through an interaction with the brain dopaminergic system. Here, we identified the histaminergic mechanism of sensorimotor gating and the role of histamine H3R in the regulation...
متن کاملMelatonin: A therapeutic potential for the neurohormone in gallbladder disorders
In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...
متن کاملMelatonin: A therapeutic potential for the neurohormone in gallbladder disorders
In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...
متن کاملmGluR5 Ablation in Cortical Glutamatergic Neurons Increases Novelty-Induced Locomotion
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research bulletin
دوره 68 6 شماره
صفحات -
تاریخ انتشار 2006