Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore.

نویسندگان

  • K D Hudson
  • B M Corfe
  • E H Kemp
  • I M Feavers
  • P J Coote
  • A Moir
چکیده

The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numbers of individual nutrient germinant receptors and other germination proteins in spores of Bacillus subtilis.

Germination of dormant Bacillus subtilis spores with specific nutrient germinants is dependent on a number of inner membrane (IM) proteins, including (i) the GerA, GerB, and GerK germinant receptors (GRs) that respond to nutrient germinants; (ii) the GerD protein, essential for optimal GR function; and (iii) SpoVA proteins, essential for the release of the spore-specific molecule dipicolinic ac...

متن کامل

Levels of Germination Proteins in Bacillus subtilis Dormant, Superdormant, and Germinating Spores

Bacterial endospores exhibit extreme resistance to most conditions that rapidly kill other life forms, remaining viable in this dormant state for centuries or longer. While the majority of Bacillus subtilis dormant spores germinate rapidly in response to nutrient germinants, a small subpopulation termed superdormant spores are resistant to germination, potentially evading antibiotic and/or deco...

متن کامل

Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis.

The products of the hexacistronic spoVA operon of Bacillus subtilis may be involved in the transport of dipicolinic acid into the forespore during sporulation and its release during spore germination. The major hydrophilic coding region of B. subtilis spoVAD was cloned, the protein was expressed in Escherichia coli as a His tag fusion protein, and a rabbit antiserum was raised against the purif...

متن کامل

Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis.

The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca(2+)-dipicolinic acid, dithi...

متن کامل

Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores.

A germination-specific amidase of bacilli is a major spore-lytic enzyme that is synthesized with a putative signal sequence and hydrolyses spore cortex in situ. The sleB gene encoding this amidase in Bacillus subtilis and Bacillus cereus was expressed in the forespore compartment of sporulating cells under the control of sigmaG, as shown by Northern blot and primer extension analyses. The fores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 14  شماره 

صفحات  -

تاریخ انتشار 2001