Inverse Problems in Darboux’ Theory of Integrability
نویسندگان
چکیده
The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the case of prescribed integrating factors. A number of relevant examples and applications is included.
منابع مشابه
Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملOn the Extensions of the Darboux Theory of Integrability
Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields have been done. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the alg...
متن کاملFrom the Birkhoff-Gustavson normalization to the Bertrand-Darboux integrability condition
The Bertrand-Darboux integrability condition for a certain class of perturbed harmonic oscillators is studied from the viewpoint of the BirkhoffGustavson(BG)-normalization: In solving an inverse problem of the BGnormalization on computer algebra, it is shown that if the perturbed harmonic oscillators with a homogeneous cubic-polynomial potential and with a homogeneous quartic-polynomial potenti...
متن کاملGeneralized cofactors and nonlinear superposition principles
It is known from Lie’s works that the only ordinary differential equation of first order in which the knowledge of a certain number of particular solutions allows the construction of a fundamental set of solutions is, excepting changes of variables, the Riccati equation. For planar complex polynomial differential systems, the classical Darboux integrability theory exists based on the fact that ...
متن کامل0 From the Birkhoff - Gustavson normalization to the Bertrand - Darboux integrability condition † ‡ §
The Bertrand-Darboux integrability condition for a certain class of perturbed harmonic oscillators is studied from the viewpoint of the Birkhoff-Gustavson(BG)-normalization: By solving an inverse problem of the BG-normalization on computer algebra, it is shown that if the perturbed harmonic oscillator with a homogeneous cubic-polynomial potential and the perturbed harmonic oscillator with a hom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011