Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe.
نویسندگان
چکیده
In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were approximately 30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain.
منابع مشابه
Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome.
The effect of early gestation maternal undernutrition followed by realimentation on placentomal vascular growth and angiogenic factor expression was determined in multiparous beef cows bred to the same bull. Cows gestating only female fetuses (n = 30) were fed in equal numbers to meet the NRC requirements (control) or were fed below the NRC requirements to lose BW (nutrient restricted; NR) from...
متن کاملMaternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe.
Obesity of women at conception is increasing, a condition associated with offspring obesity. We hypothesized that maternal obesity increases placental fatty acid transporter (FATP) expression, enhancing delivery of fatty acids to their fetuses. Sheep are a commonly utilized biomedical model for pregnancy studies. Nonpregnant ewes were randomly assigned to a control group [100% of National Resea...
متن کاملBoard-invited review: intrauterine growth retardation: implications for the animal sciences.
Intrauterine growth retardation (IUGR), defined as impaired growth and development of the mammalian embryo/fetus or its organs during pregnancy, is a major concern in domestic animal production. Fetal growth restriction reduces neonatal survival, has a permanent stunting effect on postnatal growth and the efficiency of feed/forage utilization in offspring, negatively affects whole body composit...
متن کاملHow the maternal environment impacts fetal and placental development: implications for livestock production
Fetal survival is dependent upon proper placental growth and vascularity early in pregnancy. The ability for the fetus to reach its genetic growth potential is dependent upon the continual plasticity of placental function throughout gestation. Inadequate maternal environment has been documented to alter fetal organogenesis and growth, thus leading to improper postnatal growth and performance in...
متن کاملRecent Advances in Nutritional Sciences Maternal Nutrition and Fetal Development
Nutrition is the major intrauterine environmental factor that alters expression of the fetal genome and may have lifelong consequences. This phenomenon, termed “fetal programming,” has led to the recent theory of “fetal origins of adult disease.” Namely, alterations in fetal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 299 1 شماره
صفحات -
تاریخ انتشار 2010