Convex Approximation by Quadratic Splines

نویسندگان

  • Yingkang Hu
  • YINGKANG HU
چکیده

Given a convex function f without any smoothness requirements on its derivatives, we estimate its error of approximation by C 1 convex quadratic splines in terms of ! 3 (f; 1=n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation and geometric modeling with simplex B-splines associated with irregular triangles

Bivariate quadratic simplicial B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a Cl-smooth surface. The generation of triangle vertices is adjusted to the area1 distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-s...

متن کامل

On Characterization of Quadratic Splines

A quadratic spline is a differentiable piecewise quadratic function. Many problems in numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines are studied in the existing literature, and algorithms are developed on a case by case basis. There lacks an analytical representation of a ge...

متن کامل

A-splines: local interpolation and approximation using Gk-continuous piecewise real algebraic curves

We characterize of the Bernstein-Bezier (BB) form of an implicitly deened bivariate polynomial over a triangle, such that the zero contour of the polynomial deenes a smooth and single sheeted real algebraic curve segment. We call a piecewise G k-continuous chain of such real algebraic curve segments in BB-form as an A-spline (short for algebraic spline). We prove that the degree n A-splines can...

متن کامل

4 Generalized C 1 quadratic B - splines generated by Merrien subdivision algorithm and some applications

A new global basis of B-splines is defined in the space of generalized quadratic splines (GQS) generated by Merrien subdivision algorithm. Then, refinement equations for these B-splines and the associated corner-cutting algorithm are given. Afterwards, several applications are presented. First a global construction of monotonic and/or convex generalized splines interpolating monotonic and/or co...

متن کامل

Optimal Quasi-Interpolation by Quadratic C-Splines on Type-2 Triangulations

We describe a new scheme based on quadratic C-splines on type-2 triangulations approximating gridded data. The quasiinterpolating splines are directly determined by setting the BernsteinBézier coefficients of the splines to appropriate combinations of the given data values. In this way, each polynomial piece of the approximating spline is immediately available from local portions of the data, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993