Astaxanthin and β-carotene in Helicobacter pylori-induced Gastric Inflammation: A Mini-review on Action Mechanisms
نویسندگان
چکیده
Helicobacter pylori is a dominant bacterium living in the human gastric tissues. In H. pylori-infected tissues, the infiltrated inflammatory cells produce reactive oxygen species (ROS), leading to gastric inflammation with production of various mediators. According to numerous epidemiological studies, dietary carotenoids may prevent gastric inflammation due to their antioxidant properties. Recent studies showed that antioxidant and anti-inflammatory effects of astaxanthin and β-carotene may contribute to inhibition of H. pylori-induced gastric inflammation. Astaxanthin changes H. pylori-induced activation of T helper cell type 1 response towards T helper cell type 2 response in the infected tissues. Astaxanthin inhibits the growth of H. pylori. Even though astaxanthin reduces H. pylori-induced gastric inflammation, it does not reduce cytokine levels in the infected tissues. β-Carotene suppresses ROS-mediated inflammatory signaling, including mitogen-activated protein kinases and redox-sensitive transcription factors, and reduces expression of inflammatory mediators, including interleukin-8, inducible nitric oxide synthase, and cyclooxygenase-2 in the infected tissues. Therefore, consumption of astaxanthin- and β-carotene-rich foods may be beneficial to prevent H. pylori-induced gastric inflammation. This review will summarize anti-inflammatory mechanisms of astaxanthin and β-carotene in H. pylori-mediated gastric inflammation.
منابع مشابه
Repressed TGF-β signaling through CagA-Smad3 interaction as pathogenic mechanisms of Helicobacter pylori-associated gastritis
Helicobacter pylori (H. pylori) infection causes chronic gastric inflammation, peptic ulceration, and gastric carcinogenesis, in which H. pylori cytotoxin-associated gene A (CagA) plays major pathogenic action. Since transforming growth factor-β (TGF-β) and its signaling also are principally implicated in either modulating gastric mucosal inflammatory responses or causing carcinogenesis and are...
متن کاملHelicobacter pylori Induces Hypermethylation of CpG Islands Through Upregulation of DNA Methyltransferase: Possible Involvement of Reactive Oxygen/Nitrogen Species
Helicobacter pylori infection has been considered to be one of the major factors implicated in etiology of gastric cancer. Aberrant DNA methylation accounts for epigenetic modifications induced by H. pylori. H. pylori-induced hypermethylation has been linked to enhancement of the rates of metastasis and recurrence in gastric cancer patients. H. pylori-induced gene hypermethylation has been know...
متن کاملPathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells
Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...
متن کاملThe Role of Helicobacter Pylori Virulence Factors in Gastric Cancer
Introduction: Gastrointestinal (GI) cancers are considered among the most important causes of mortality and morbidity. Helicobacter pylori infection has been proven to be highly associated with the development of a variety of gastric diseases such as chronic gastritis, peptic ulcer disease (PUD), mucosa-associated lymphoid tissue (MALT), and gastric cancer (GC). To date, the exact role of the v...
متن کاملAstaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice.
Helicobacter pylori infection in humans is associated with chronic type B gastritis, peptic ulcer disease, and gastric carcinoma. A high intake of carotenoids and vitamin C has been proposed to prevent development of gastric malignancies. The aim of this study was to explore if the microalga Haematococcus pluvialis rich in the carotenoid astaxanthin and vitamin C can inhibit experimental H. pyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2017