Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
نویسندگان
چکیده
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.
منابع مشابه
Influence of salinity on co2 fluxes stomatal conductance and specific leaf eeight of jojoba
متن کامل
Carbon and Oxygen Isotope Analysis of Leaf Biomass Reveals Contrasting Photosynthetic Responses to Elevated Co(2) Near Geologic Vents in Yellowstone National Park
In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP) in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C) analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine) and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax) was used to trace the inputs of vent CO2 and quantify assi...
متن کاملFoliar Responses of Olive Trees (Olea Europaea L.) under Field Exposure to Elevated CO2 Concentration
Five-year-old olive plants (cvs. Frantoio and Moraiolo) grown in large pots were exposed for seven months to ambient or high atmospheric CO2 concentration ([CO2]) in free-air CO2 enrichment facility. Exposure to elevated [CO2] enhanced net photosynthesis and decreased stomatal conductance, leading to greater water use efficiency. Stomatal density also decreased in elevated [CO2], while the rati...
متن کاملWhy is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis
Experimental evidence indicates that the stomatal conductance and nitrogen concentration ([N]) of foliage decline under CO2 enrichment, and that the percentage growth response to elevated CO2 is amplified under water limitation, but reduced under nitrogen limitation. We advance simple explanations for these responses based on an optimisation hypothesis applied to a simple model of the annual ca...
متن کاملThe effect of spraying of methyl jasmonate and 24-epi-brassinolide on photosynthesis, chlorophyll fluorescence and leaf stomatal traits in black mustard (Brassica nigra L.) under salinity stress
Methyl jasmonate and Epi-brassinolide as plant growth regulators have significant biological effects on plant growth, including increased tolerance to salt stress in plants. In this study, the effects of salinity stress and its interaction with methyl jasmonate and Epi-brassinolide on chlorophyll concentration, rate of photosynthesis, transpiration, stomatal conductance and resistance and chlor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 25 شماره
صفحات -
تاریخ انتشار 2009