A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer.
نویسندگان
چکیده
Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215-HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome-spindle pole interface by the CEP215-HSET complex could promote survival of cancer cells containing supernumerary centrosomes.
منابع مشابه
Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET.
Centrosomes represent the major microtubule organizing centers (MTOCs) of animal somatic cells and orchestrate bipolar spindle assembly during mitotic cell division. In meiotic cells, the kinesin HSET compensates for the lack of centrosomes by focusing acentrosomal MTOCs into two spindle poles. By clustering multiple centrosomes into two spindle poles, HSET also mediates bipolar mitosis in canc...
متن کاملDesign, Synthesis, and Biological Evaluation of an Allosteric Inhibitor of HSET that Targets Cancer Cells with Supernumerary Centrosomes
Centrosomes associate with spindle poles; thus, the presence of two centrosomes promotes bipolar spindle assembly in normal cells. Cancer cells often contain supernumerary centrosomes, and to avoid multipolar mitosis and cell death, these are clustered into two poles by the microtubule motor protein HSET. We report the discovery of an allosteric inhibitor of HSET, CW069, which we designed using...
متن کاملHSET overexpression fuels tumor progression via centrosome clustering-independent mechanisms in breast cancer patients
Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival...
متن کاملThe Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organizati...
متن کاملMechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.
Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016