Infinitely Many Homoclinic Orbits for 2nth-Order Nonlinear Functional Difference Equations Involving the p-Laplacian

نویسندگان

  • Xiaofei He
  • Donal O’Regan
چکیده

and Applied Analysis 3 F2 F t, xn, . . . , x0 W t, x0 − H t, xn, . . . , x0 , for every t ∈ Z, W,H are continuously differentiable in x0 and xn, . . . , x0, respectively. Moreover, there is a bounded set J ⊂ Z such that H t, xn, . . . , x0 ≥ 0; 2.2 F3 There is a constant μ > p such that 0 < μW t, x0 ≤ W ′ 2 t, x0 x0, ∀ t, x0 ∈ Z × R \ {0} ; 2.3 F4 H t, 0, . . . , 0 ≡ 0, and there is a constant ∈ p, μ such that 0 ∑ i −n H ′ 2 n i t, xn, . . . , x0 x−i ≤ H t, xn, . . . , x0 ; 2.4 F5 There exists a constant b > 0 such that H t, xn, . . . , x0 ≤ bγ , for t ∈ Z, γ > 1, 2.5 where γ ∑n i 0|xi| . F6 F t,−xn, . . . ,−x0 F t, xn, . . . , x0 , for all t, xn, . . . , x0 ∈ Z × R 1. Then 1.1 possesses an unbounded sequence of homoclinic solutions. Theorem 2.2. Assume that r, q, and F satisfy (r), (q), (F1), (F3)–(F5) and the following assumption: F2′ F t, xn, . . . , x0 W t, x0 − H t, xn, . . . , x0 , for every t ∈ Z, W,H are continuously differentiable in x0 and xn, . . . , x0, respectively, and |F t, xn, . . . , x0 | o ( γ ) as γ −→ 0, 2.6 where γ ∑n i 0|xi| 1/p uniformly in t ∈ Z. Then 1.1 possesses an unbounded sequence of homoclinic solutions. Theorem 2.3. Assume that r, q, and F satisfy (r), (q), (F1) and satisfy the following assumptions: F7 For any t ∈ Z, F t, xn, . . . , x0 ≥ F t, x0 ≥ 0; 2.7 4 Abstract and Applied Analysis F8 For any r > 0, there exist a a r , b b r > 0, and ν < p such that ( p 1 a b (∑n i 0|xi| )ν/p ) F t, xn, . . . , x0 ≤ 0 ∑ i −n F ′ 2 n i t, xn, . . . , x0 x−i, ∀t ∈ Z, ( n ∑ i 0 |xi| )1/p ≥ r; 2.8 F9 For any t ∈ Z lim s→ ∞ [ s−pmin |x| 1 F t, sx ] ∞. 2.9 Then there exists an unbounded sequence of homoclinic solutions for 1.1 . 3. Preliminaries To apply critical point theory to study the existence of homoclinic solutions of 1.1 , we shall state some basic notations and lemmas, which will be used in the proofs of our main results. Let S {{u t }t∈Z : u t ∈ R, t ∈ Z}, E { u ∈ S : ∑ t∈Z |r t − 1 Δu t − 1 | q t |u t |p < ∞ } 3.1 and for u ∈ E, let ‖u‖ { ∑ t∈Z |r t − 1 Δu t − 1 | q t |u t |p }1/p . 3.2 Then E is a uniform convex Banach space with this norm. Let I : E → R be defined by I u 1 p ‖u‖ − ∑ t∈Z F t, u t n , . . . , u t . 3.3 If q and F1 hold, then I ∈ C1 E,R and one can easily check that 〈 I ′ u , v 〉 ∑ t∈Z [ r t − 1 |Δu t − 1 |p−2Δnv t − 1 q t |u t |p−2v t −f t , u t n , . . .u t , . . . u t − n v t , ∀u, v ∈ E. 3.4 Abstract and Applied Analysis 5 By usingand Applied Analysis 5 By using Δu t − 1 n ∑ k 0 −1 k ( n k ) u t n − k − 1 , 3.5 we can compute the partial derivative as ∂I u ∂u t Δ ( r t − n φp Δu t − 1 ) q t φp u t − f t, u t n , . . . , u t , . . . , u t − n . 3.6 So, the critical points of I in E are the solutions of 1.1 with u ±∞ 0. Lemma 3.1 see 12 . Let E be a real Banach space and I ∈ C1 E,R satisfy (PS)-condition with I even. Suppose that I satisfies the following conditions: i I 0 0; ii There exist constants ρ, α > 0 such that I|∂Bρ 0 ≥ α; iii For each finite dimensional subspace E′ ⊂ E, there is r r E′ > 0 such that I u ≤ 0 for u ∈ E′ \ Br 0 , where Br 0 is an open ball in E of radius r centered at 0. Then I possesses an unbounded sequence of critical values. Lemma 3.2. For u ∈ E, β‖u‖p∞ ≤ β‖u‖plp ≤ ‖u‖, 3.7 where β inft∈Zq t . Lemma 3.3. Assume that (F3) holds. Then for every t, x ∈ Z×R, s−μW t, sx is nondecreasing on 0, ∞ . The proof of Lemmas 3.2 and 3.3 is routine and so we omit it. 4. Proofs of Theorems Proof of Theorem 2.1. It is clear that I 0 0. Our proof is devided into three steps. Step 1 PS Condition . Assume that {uk}k∈N ⊂ E is a sequence such that {I uk }k∈N is bounded and I ′ uk → 0 as k → ∞. Then there exists a constant c > 0 such that |I uk | ≤ c, ∥I ′ uk ∥ E∗ ≤ c for k ∈ N. 4.1 6 Abstract and Applied Analysis From 2.2 , 2.3 , 2.4 , 4.1 , F3 , and F4 , we obtain pc pc‖uk‖ ≥ pI uk − p 〈 I ′ uk , uk 〉 − p ‖uk‖ − p ∑ t∈Z [ W t, uk t − 1 W ′ 2 t, uk t uk t ] p ∑ t∈Z H t, uk t n , . . . , uk t − p ∑ t∈Z 0 ∑ i −n H ′ 2 n i t i, uk t n i , . . . , uk t i uk t − p ‖uk‖ − p ∑ n∈Z [ W t, uk t − 1 W ′ 2 t, uk t uk t ] p ∑ t∈Z H t, uk t n , . . . , uk t − p ∑ t∈Z 0 ∑ i −n H ′ 2 n i t, uk t n , . . . , uk t uk t − i ≥ − p ‖uk‖, k ∈ N. 4.2 By 4.2 , there exists a constant A > 0 such that ‖uk‖ ≤ A for k ∈ N. 4.3 It can be assumed that uk ⇀ u0 in E. For any given number ε > 0, by F1 , we can choose ζ > 0 such that ∣f t, u t n , . . . , u t , . . . , u t − n ∣ ≤ εξp−1 for t ∈ Z\J, u t n , . . . , u t , . . . , u t−n ∈Rn 1, 4.4 where ξ ∑n i −n|u t i |p 1/p ≤ ζ. Since q t → ∞, we can also choose an integer Π > max{|k| : k ∈ J} such that q t ≥ 2n 1 A p ζp , |t| ≥ Π. 4.5 By 4.2 and 4.4 , we have |uk t | 1 q t q t uk t p ≤ ζ p 2n 1 Ap ‖uk‖ ≤ ζ p 2n 1 for |t| ≥ Π, k ∈ N. 4.6 Abstract and Applied Analysis 7 Since uk ⇀ u0 in E, it is easy to verify that uk t converges to u0 t pointwise for all t ∈ Z, that is lim k→∞ uk t u0 t , ∀t ∈ Z. 4.7and Applied Analysis 7 Since uk ⇀ u0 in E, it is easy to verify that uk t converges to u0 t pointwise for all t ∈ Z, that is lim k→∞ uk t u0 t , ∀t ∈ Z. 4.7 Hence, we have by 4.6 and 4.7 |u0 t | ≤ ζ p 2n 1 for |t| ≥ Π. 4.8 It follows from 4.7 and the continuity of f t, u t 1 , . . . , u t , . . . , u t − n on u t 1 , . . . , u t , . . . , u t − n that there exists k0 ∈ N such that Π ∑ t −Π ∣f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n ∣<ε for k ≥ k0. 4.9 On the other hand, it follows from F1 , 2.4 , 4.2 , 4.4 , 4.6 , and 4.8 that ∑ |t|>Π ∣f t, uk t n , . . . , uk t , . . . , uk t − n − f t, u0 t n , . . . , u0 t , . . . , u0 t − n ∣ × |uk t − u0 t | ≤ ∑ |t|>Π (∣∣f t, uk t n , . . . , uk t , . . . , uk t − n ∣ ∣f t, u0 t n , . . . , u0 t , . . . , u0 t − n ∣ ) × |uk t | |u0 t | ≤ ε ∑ |t|>Π [( n ∑ i −n |uk t i |p−1 ) ( n ∑ i −n |u0 t i |p−1 )] |uk t | |u0 t | ≤ 2n 1 ε ∑ t∈Z ( |uk t |p−1 |u0 t |p−1 ) |uk t | |u0 t | ≤ 4n 2 ε ∑ t∈Z |uk t | |u0 t | ) ≤ 4n 2 ε β ( A ‖u0‖ ) . 4.10 Since ε is arbitrary, combining 4.9 with 4.10 , we get ∑ t∈Z ∣f t, uk t n , . . . , uk t , . . . , uk t − n − f t, u0 t n , . . . , u0 t , . . . , u0 t − n ∣ |uk t − u0 t | −→ 0 as k −→ ∞. 4.11 8 Abstract and Applied Analysis Using the Hölder’s inequality ac bd ≤ a b 1/p c d , 4.12 where a, b, c, d are nonnegative numbers and 1/p 1/q 1, p > 1, it follows from 3.3 and 3.4 that 〈 I ′ uk − I ′ u0 , uk − u0 〉 ∑ t∈Z |r t − 1 Δuk t − 1 |p−2 Δuk t − 1 ,Δuk t − 1 −Δu0 t − 1 ∑ t∈Z q t |uk t |p−2 uk t , uk t − u0 t − ∑ t∈Z |r t − 1 Δu0 t − 1 |p−2 Δu0 t − 1 ,Δuk t − 1 −Δu0 t − 1 − ∑ t∈Z q t |u0 t |p−2 u0 n , uk t − u0 t − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk n − u0 n ) ‖uk‖ ‖u0‖ − ∑ n∈Z |r t − 1 Δuk t − 1 |p−2 Δuk t − 1 ,Δu0 t − 1 − ∑ t∈Z q t |uk t |p−2 uk t , u0 t − ∑ t∈Z |r t − 1 Δu0 t − 1 |p−2 Δu0 t − 1 ,Δuk t − 1 − ∑ t∈Z q t |u0 t |p−2 u0 t , uk t − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk n − u0 n ) ≥ ‖uk‖ ‖u0‖ − ( ∑ t∈Z |r t − 1 Δu0 t − 1 | 1/p∑ t∈Z |r t − 1 Δuk t − 1 | )1/q − ( ∑ t∈Z q t |u0 t | 1/p∑ t∈Z q t |uk t | )1/q − ( ∑ t∈Z |r t − 1 Δuk t − 1 | 1/p∑ t∈Z |r t − 1 Δu0 t − 1 | )1/q Abstract and Applied Analysis 9and Applied Analysis 9 − ( ∑ t∈Z q t |uk t | 1/p∑ t∈Z q t |u0 t | )1/q − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk t − u0 t ) ≥ ‖uk‖ ‖u0‖ − ( ∑ t∈Z |r t − 1 Δu0 t − 1 | q t |u0 t | ] )1/p · ( ∑ t∈Z |r t − 1 Δuk t − 1 | q t |uk t | ] )1/q − ( ∑ t∈Z |r t − 1 Δuk n − 1 | q t |uk t | ] )1/p · ( ∑ t∈Z |r t − 1 Δu0 n − 1 | q t |u0 t | ] )1/q − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk t − u0 t ) ‖uk‖ ‖u0‖ − ‖u0‖‖uk‖ − ‖uk‖‖u0‖ − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk t − u0 t ) ( ‖uk‖ − ‖u0‖ ) ‖uk‖ − ‖u0‖ − ∑ t∈Z ( f t, uk t n , . . . , uk t , . . . , uk t − n −f t, u0 t n , . . . , u0 t , . . . , u0 t − n , uk t − u0 t ) . 4.13 Since I ′ uk → 0 as k → ∞ and uk ⇀ u0 in E, it follows from 4.11 and 4.13 that 〈 I ′ uk − I ′ u0 , uk − u0 〉 −→ 0 as k → ∞, 4.14 which yields that ‖uk‖ → ‖u‖ as k → ∞. By the uniform convexity of E and the fact that uk ⇀ u0 in E, it follows from the Kadec-Klee property that uk → u0 in E. Hence, I satisfies PS -condition. 10 Abstract and Applied Analysis Step 2 Condition ii of Lemma 3.1 . By F1 , there exists η ∈ 0, 1 such that |F t, u t n , . . . , u t | ≤ 2 −pβ 4p n 1 n ∑ i 0 |u t i | for t ∈ Z \ J, ( n ∑ i 0 |u t i | )1/p ≤ η. 4.15 Set M sup{W t, u | t ∈ J, u ∈ R, |u| 1}, 4.16 and δ min{ β/ 4pM 1 μ−p , η}. If ‖u‖ β1/pδ : ρ, then by Lemma 3.2, |u t | ≤ δ ≤ η < 1 for t ∈ Z. By 4.16 and Lemma 3.2, we have ∑ t∈J W t, u t ≤ ∑ t∈J,u t / 0 W ( t, u t |u t | ) |u t | ≤ M ∑ t∈J |u t | ≤ Mδμ−p ∑ t∈J |u t | ≤ Mδ μ−p β ∑ t∈J q t |u t | ≤ 1 4p ∑ t∈J q t |u t |. 4.17 Set α βδ/2p. Hence, from 3.3 , 4.15 , 4.17 , q , F1 , and F2 , we have I u 1 p ‖u‖ − ∑ t∈Z F t, u t n , . . . , u t 1 p ‖u‖ − ∑ t∈Z\J F t, u t n , . . . , u t − ∑ t∈J F t, u t n , . . . , u t ≥ 1 p ‖u‖ − 2 −pβ 4p n 1 ∑ t∈Z\J ( n ∑ i 0 |u t i | ) − ∑ t∈J W t, u t ∑ t∈J H t, u t n , . . . , u t ≥ 1 p ‖u‖ − β 4p ∑ t∈Z |u t | − 1 4p ∑ t∈J q t |u t | ≥ 1 p ‖u‖ − 1 4p ∑ t∈Z q t |u t | − 1 4p ∑ t∈J q t |u t | Abstract and Applied Analysis 11 ≥ 1 p ‖u‖ − 1 4p ‖u‖ − 1 4p ‖u‖ 1 2p ‖u‖and Applied Analysis 11 ≥ 1 p ‖u‖ − 1 4p ‖u‖ − 1 4p ‖u‖ 1 2p ‖u‖

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian

We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.

متن کامل

EXISTENCE OF PERIODIC SOLUTIONS FOR 2nTH-ORDER NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS

By using the critical point theory, the existence of periodic solutions for 2nth-order nonlinear pLaplacian difference equations is obtained. The main approaches used in our paper are variational techniques and the Saddle Point theorem. The problem is to solve the existence of periodic solutions for 2nth-order p-Laplacian difference equations. The results obtained successfully generalize and co...

متن کامل

Existence of periodic solutions for a 2nth-order difference equation involving p-Laplacian∗

By using the critical point theory, the existence of periodic solutions for a 2nth-order nonlinear difference equation containing both advance and retardation involving p-Laplacian is obtained. The main approaches used in our paper are variational techniques and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions for a 2nth-order p-Laplacian difference equation...

متن کامل

INFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS

In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014