Optimal Control of a High-Volume Assemble-to-Order System
نویسندگان
چکیده
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations Research. We consider an assemble-to-order system with a high volume of prospective customers arriving per unit time. Our objective is to maximize expected infinite-horizon discounted profit by choosing product prices, component production capacities, and a dynamic policy for sequencing customer orders for assembly. We prove that a myopic discrete-review sequencing policy, which allocates scarce components among orders for different products to minimize instantaneous physical and financial holding costs, is asymptotically optimal. Furthermore, we prove that optimal prices and production capacity nearly balance the supply and demand for components (i.e., it is economically optimal to operate the system in heavy traffic), so system performance is characterized by a diffusion approximation. The diffusion approximation exhibits state-space collapse: Its dimension equals the number of components (rather than the number of components plus the number of products). These results complement the existing assemble-to-order literature, which focuses on managing component inventory and assumes FIFO sequencing of orders for assembly.
منابع مشابه
Error Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly
Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...
متن کاملOptimal control of a high-volume assemble-to-order system with maximum leadtime quotation and expediting
We consider an assemble-to-order system in which components must be expedited, if necessary, to avoid violating quoted maximum leadtimes. When a high volume of customers arrive per time unit, we provide a policy for setting static prices, maximum leadtime quotations, and component production capacity, and then dynamically sequencing orders for assembly and expediting components. When expediting...
متن کاملThe Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Oper. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2006