A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices.
نویسندگان
چکیده
We present a technique for the iterative diagonalization of random-phase approximation (RPA) matrices, which are encountered in the framework of time-dependent density-functional theory (TDDFT) and the Bethe-Salpeter equation. The non-Hermitian character of these matrices does not permit a straightforward application of standard iterative techniques used, i.e., for the diagonalization of ground state Hamiltonians. We first introduce a new block variational principle for RPA matrices. We then develop an algorithm for the simultaneous calculation of multiple eigenvalues and eigenvectors, with convergence and stability properties similar to techniques used to iteratively diagonalize Hermitian matrices. The algorithm is validated for simple systems (Na(2) and Na(4)) and then used to compute multiple low-lying TDDFT excitation energies of the benzene molecule.
منابع مشابه
An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملSparse Generalized Fourier Transforms ∗
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...
متن کاملIterative algorithms for families of variational inequalities fixed points and equilibrium problems
متن کامل
Joint Approximate Diagonalization of Positive Deenite Hermitian Matrices
This paper provides an iterative algorithm to jointly approximately di-agonalize K Hermitian positive deenite matrices ? 1 , : : : , ? K. Speciically it calculates the matrix B which minimizes the criterion P K k=1 n k log det diag(BC k B) ? log det(BC k B)], n k being positive numbers, which is a measure of the deviation from diagonality of the matrices BC k B. The convergence of the algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2012