A saddle-point approach to the Monge-Kantorovich optimal transport problem

نویسنده

  • CHRISTIAN LÉONARD
چکیده

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Optimal Plans for the Monge-kantorovich Transport Problem

We present a general method, based on conjugate duality, for solving a convex minimization problem without assuming unnecessary topological restrictions on the constraint set. It leads to dual equalities and characterizations of the minimizers without constraint qualification. As an example of application, the Monge-Kantorovich optimal transport problem is solved in great detail. In particular,...

متن کامل

On Fluid mechanics formulation of Monge-Kantorovich Mass Transfer Problem

The Monge-Kantorovich mass transfer problem is equivalently formulated as an optimal control prblem for the mass transport equation. The equivalency of the two problems is establish using the Lax-Hopf formula and the optimal control theory arguments. Also, it is shown that the optimal solution to the equivalent control problem is given in a gradient form in terms of the potential solution to th...

متن کامل

Characterization of Optimal Transport Plans for the Monge-kantorovich-problem

We prove that c-cyclically monotone transport plans π optimize the Monge-Kantorovich transportation problem under an additional measurability condition. This measurability condition is always satisfied for finitely valued, lower semi-continuous cost functions. In particular, this yields a positive answer to Problem 2.25 in C. Villani’s book. We emphasize that we do not need any regularity condi...

متن کامل

Imaging with Kantorovich-Rubinstein Discrepancy

We propose the use of the Kantorovich-Rubinstein norm from optimal transport in imaging problems. In particular, we discuss a variational regularisation model endowed with a Kantorovich-Rubinstein discrepancy term and total variation regularization in the context of image denoising and cartoon-texture decomposition. We point out connections of this approach to several other recently proposed me...

متن کامل

Convex minimization problems with weak constraint qualifications

One revisits the standard saddle-point method based on conjugate duality for solving convex minimization problems. Our aim is to reduce or remove unnecessary topological restrictions on the constraint set. Dual equalities and characterizations of the minimizers are obtained with weak or without constraint qualifications. The main idea is to work with intrinsic topologies which reflect some geom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013