A memory-efficient algorithm for multiple sequence alignment with constraints
نویسندگان
چکیده
MOTIVATION Recently, the concept of the constrained sequence alignment was proposed to incorporate the knowledge of biologists about structures/functionalities/consensuses of their datasets into sequence alignment such that the user-specified residues/nucleotides are aligned together in the computed alignment. The currently developed programs use the so-called progressive approach to efficiently obtain a constrained alignment of several sequences. However, the kernels of these programs, the dynamic programming algorithms for computing an optimal constrained alignment between two sequences, run in (gamman2) memory, where gamma is the number of the constraints and n is the maximum of the lengths of sequences. As a result, such a high memory requirement limits the overall programs to align short sequences only. RESULTS We adopt the divide-and-conquer approach to design a memory-efficient algorithm for computing an optimal constrained alignment between two sequences, which greatly reduces the memory requirement of the dynamic programming approaches at the expense of a small constant factor in CPU time. This new algorithm consumes only O(alphan) space, where alpha is the sum of the lengths of constraints and usually alpha << n in practical applications. Based on this algorithm, we have developed a memory-efficient tool for multiple sequence alignment with constraints. AVAILABILITY http://genome.life.nctu.edu.tw/MUSICME.
منابع مشابه
An Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملA Memetic Algorithm for Hybrid Flowshops with Flexible Machine Availability Constraints
This paper considers the problem of scheduling hybrid flowshops with machine availability constraints (MAC) to minimize makespan. The paper deals with a specific case of MAC caused by preventive maintenance (PM) operations. Contrary to previous papers considering fixed or/and conservative policies, we explore a case in which PM activities might be postponed or expedited while necessary. Regardi...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملPseudo-Boolean Multiple Sequence Alignment
Multiple sequence alignment is a central problem in Bioinformatics and a challenging one for optimisation algorithms. An established integer programming approach is to apply branch-and-cut to a graph-theoretical model. The models are exponentially large but are represented intensionally, and violated constraints can be located in polynomial time. This report describes a new integer program form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2005