Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths
نویسندگان
چکیده
We investigate the all-pairs shortest paths problem in weighted graphs. We present an algorithm|the Hidden Paths Algorithm|that nds these paths in time O(m n+n 2 log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra's algorithm. We argue that m is likely to be small in practice, since m = O(n logn) with high probability for many probability distributions on edge weights. We also prove an (mn) lower bound on the running time of any path-comparison based algorithm for the all-pairs shortest paths problem. Path-comparison based algorithms form a natural class containing the Hidden Paths Algorithm, as well as the algorithms of Dijkstra and Floyd. Lastly, we consider generalized forms of the shortest paths problem, and show that many of the standard shortest paths algorithms are eeective in this more general setting.
منابع مشابه
Multi - Terminal Shortest Paths
The present paper gives an algorithm that finds simultaneously the shortest paths between many pairs of nodes in a given network. In the book by Berge, the values of shortest paths between many pairs of nodes are found. Here, we use a special matrix multiplication technique to find the actual arcs that are used to form the shortest paths. In a network with n nodes, log [n-l] special matrix mult...
متن کاملRunning Time Analysis of ACO Systems for Shortest Path Problems
Ant Colony Optimization (ACO) is inspired by the ability of ant colonies to find shortest paths between their nest and a food source. We analyze the running time of different ACO systems for shortest path problems. First, we improve running time bounds by Attiratanasunthron and Fakcharoenphol [Information Processing Letters, 105(3):88–92, 2008] for single-destination shortest paths and extend t...
متن کاملImproved algorithms for replacement paths problems in restricted graphs
We present near-optimal algorithms for two problems related to finding the replacement paths for edges with respect to shortest paths in sparse graphs. The problems essentially study how the shortest paths change as edges on the path fail, one at a time. Our technique improves the existing bounds for these problems on directed acyclic graphs, planar graphs, and non-planar integer-edge-weighted ...
متن کاملRunning time analysis of Ant Colony Optimization for shortest path problems
Ant Colony Optimization (ACO) is a modern and very popular optimization paradigm inspired by the ability of ant colonies to find shortest paths between their nest and a food source. Despite its popularity, the theory of ACO is still in its infancy and a solid theoretical foundation is needed. We present bounds on the running time of different ACO systems for shortest path problems. First, we im...
متن کاملDecremental All-Pairs ALL Shortest Paths and Betweenness Centrality
We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G = (V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(ν · log n) time per update, where n =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991