Deficits of motion integration and segregation in patients with unilateral extrastriate lesions.

نویسندگان

  • Lucia M Vaina
  • Alan Cowey
  • Marianna Jakab
  • Ron Kikinis
چکیده

Functional neuroimaging in human subjects and single cell recordings in monkeys show that several extra-striate visual areas are activated by visual motion. However, the extent to which different types of motion are processed in different regions remains unclear, although neuropsychological studies of patients with circumscribed lesions hint at regional specialization. We, therefore, studied four patients with unilateral damage to different regions of extrastriate visual cortex on a series of visual discrimination tasks that required them, to a different extent, to integrate local motion signals in order to correctly perceive the direction of global motion. Performance was assessed psychophysically and compared with that of control subjects and with the patients' performance with stimuli presented in the visual field ipsilateral to the lesion. The results indicate considerable regional specialization in extra-striate regions for different aspects of motion processing, namely the largest displacement from frame to frame (D-max) that can sustain perception of coherent motion; perception of relative speed; the amount of coherent motion needed to sustain a percept of global motion in a particular direction; the detection of discontinuities within a moving display; the extraction of form from motion. It was also clear that a defect in local motion, i.e. D-max, can be overcome by integrating local motion signals over a longer period of time. Although no patient suffered from only one defect, the overall pattern of results strongly supports the notion of regional specialization for different aspects of motion processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat.

Unilateral ibotenic acid lesions of the lateral suprasylvian (LS) cortex severely impair the ability of cats to integrate local motion signals (measured as direction range thresholds) and to extract motion signals from noise (measured as motion signal thresholds) in their contra-lesional visual hemifields. These deficits were found up to several months after the lesions and were limited to thre...

متن کامل

Different Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions

A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...

متن کامل

Challenges to normal neural functioning provide insights into separability of motion processing mechanisms.

There is a long history of attempts to disentangle different visual processing mechanisms for physically different motion cues. However, underlying neural correlates and separability of networks are still under debate. We aimed to refine the current understanding by studying differential vulnerabilities when normal neural functioning is challenged. We investigated effects of ageing and extrastr...

متن کامل

Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits.

In addition to poor literacy skills, developmental dyslexia has been associated with multisensory deficits for dynamic stimulus detection. In vision these deficits have been suggested to result from impaired sensitivity of cells within the retino-cortical magnocellular pathway and extrastriate areas in the dorsal stream to which they project. One consequence of such selectively reduced sensitiv...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 128 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2005