Incorporating Relation Paths in Neural Relation Extraction
نویسندگان
چکیده
Distantly supervised relation extraction has been widely used to find novel relational facts from plain text. To predict the relation between a pair of two target entities, existing methods solely rely on those direct sentences containing both entities. In fact, there are also many sentences containing only one of the target entities, which also provide rich useful information but not yet employed by relation extraction. To address this issue, we build inference chains between two target entities via intermediate entities, and propose a path-based neural relation extraction model to encode the relational semantics from both direct sentences and inference chains. Experimental results on realworld datasets show that, our model can make full use of those sentences containing only one target entity, and achieves significant and consistent improvements on relation extraction as compared with strong baselines. The source code of this paper can be obtained from https:// github.com/thunlp/PathNRE.
منابع مشابه
Incorporating Selectional Preferences in Multi-hop Relation Extraction
Relation extraction is one of the core challenges in automated knowledge base construction. One line of approach for relation extraction is to perform multi-hop reasoning on the paths connecting an entity pair to infer new relations. While these methods have been successfully applied for knowledge base completion, they do not utilize the entity or the entity type information to make predictions...
متن کاملModeling Relation Paths for Representation Learning of Knowledge Bases
Representation learning of knowledge bases (KBs) aims to embed both entities and relations into a low-dimensional space. Most existing methods only consider direct relations in representation learning. We argue that multiple-step relation paths also contain rich inference patterns between entities, and propose a pathbased representation learning model. This model considers relation paths as tra...
متن کاملARE: Instance Splitting Strategies for Dependency Relation-Based Information Extraction
Information Extraction (IE) is a fundamental technology for NLP. Previous methods for IE were relying on co-occurrence relations, soft patterns and properties of the target (for example, syntactic role), which result in problems of handling paraphrasing and alignment of instances. Our system ARE (Anchor and Relation) is based on the dependency relation model and tackles these problems by unifyi...
متن کاملTable Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction
This paper proposes a novel context-aware joint entity and word-level relation extraction approach through semantic composition of words, introducing a Table Filling Multi-Task Recurrent Neural Network (TF-MTRNN) model that reduces the entity recognition and relation classification tasks to a table-filling problem and models their interdependencies. The proposed neural network architecture is c...
متن کاملRelation Extraction: Perspective from Convolutional Neural Networks
Up to now, relation extraction systems have made extensive use of features generated by linguistic analysis modules. Errors in these features lead to errors of relation detection and classification. In this work, we depart from these traditional approaches with complicated feature engineering by introducing a convolutional neural network for relation extraction that automatically learns feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017