Nested Sequents for Intuitionistic Logics
نویسنده
چکیده
Nested sequent systems for modal logics were introduced by Kai Brünnler, and have come to be seen as an attractive deep reasoning extension of familiar sequent calculi. In an earlier paper I showed there was a connection between modal nested sequents and modal prefixed tableaus. In this paper I extend the nested sequent machinery to intuitionistic logic, both standard and constant domain, and relate the resulting sequent calculi to intuitionistic prefixed tableaus. Modal nested sequent machinery generalizes one sided sequent calculi—the present work similarly generalizes two sided sequents. It is noteworthy that the resulting system for constant domain intuitionistic logic is particularly simple. It amounts to a combination of intuitionistic propositional rules and classical quantifier rules, a combination that is known to be inadequate when conventional intuitionistic sequent systems are used.
منابع مشابه
Proof Theory for Indexed Nested Sequents
Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.
متن کاملCut Elimination in Nested Sequents for Intuitionistic Modal Logics
We present cut-free deductive systems without labels for the intuitionistic variants of the modal logics obtained by extending IK with a subset of the axioms d, t, b, 4, and 5. For this, we use the formalism of nested sequents, which allows us to give a uniform cut elimination argument for all 15 logic in the intuitionistic S5 cube.
متن کاملNested Sequents for Intuitionistic Modal Logics
We present cut-free deductive systems without labels for the intuitionistic variants of the modal logics obtained by extending K with a subset of the axioms d, t, b, 4, and 5. For this, we use the formalism of nested sequents. We show a uniform cut elimination argument and a terminating proof search procedure. As a corollary we get the decidability of all modal logics in the intuitionistic S5-c...
متن کاملModular Focused Proof Systems for Intuitionistic Modal Logics
Focusing is a general technique for syntactically compartmentalizing the non-deterministic choices in a proof system, which not only improves proof search but also has the representational benefit of distilling sequent proofs into synthetic normal forms. However, since focusing is usually specified as a restriction of the sequent calculus, the technique has not been transferred to logics that l...
متن کاملLabelled Tree Sequents, Tree Hypersequents and Nested (Deep) Sequents
We identify a subclass of labelled sequents called “labelled tree sequents” and show that these are notational variants of tree-hypersequents in the sense that a sequent of one type can be represented naturally as a sequent of the other type. This relationship can be extended to nested (deep) sequents using the relationship between tree-hypersequents and nested (deep) sequents, which we also sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 55 شماره
صفحات -
تاریخ انتشار 2014