Hierarchical Density-Based Clustering of White Matter Tracts in the Human Brain
نویسندگان
چکیده
Diffusion tensor magnetic resonance imaging (DTI) provides a promising way of estimating the neural fiber pathways in the human brain non-invasively via white matter tractography. However, it is difficult to analyze the vast number of resulting tracts quantitatively. Automatic tract clustering would be useful for the neuroscience community, as it can contribute to accurate neurosurgical planning, tract-based analysis, or white matter atlas creation. In this paper, the authors propose a new framework for automatic white matter tract clustering using a hierarchical density-based approach. A novel fiber similarity measure based on dynamic time warping allows for an effective and efficient evaluation of fiber similarity. A lower bounding technique is used to further speed up the computation. Then the algorithm OPTICS is applied, to sort the data into a reachability plot, visualizing the clustering structure of the data. Interactive and automatic clustering algorithms are finally introduced to obtain the clusters. Extensive experiments on synthetic data and real data demonstrate the effectiveness and efficiency of our fiber similarity measure and show that the hierarchical density-based clustering method can group these tracts into meaningful bundles on multiple scales as well as eliminating noisy fibers.
منابع مشابه
Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملAutomatic clustering and population analysis of white matter tracts using maximum density paths
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJKDB
دوره 1 شماره
صفحات -
تاریخ انتشار 2010