Local Structure of Generalized Complex Manifolds
نویسندگان
چکیده
We study generalized complex (GC) manifolds from the point of view of symplectic and Poisson geometry. We start by recalling that every GC manifold admits a canonical Poisson structure. We use this fact, together with Weinstein’s classical result on the local normal form of Poisson, to prove a local structure theorem for GC, complex manifolds, which extends the result Gualtieri has obtained in the “regular” case. Finally, we begin a study of the local structure of a GC manifold in a neighborhood of a point where the associated Poisson tensor vanishes. In particular, we show that in such a neighborhood, a “firstorder approximation” to the GC structure is encoded in the data of a constant B -field and a complex Lie algebra.
منابع مشابه
On some generalized recurrent manifolds
The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds, called, super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.] and weakly generalized recurrent manifolds ...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملN ov 2 00 5 Reduction and submanifolds of generalized complex manifolds by Izu Vaisman
We recall the presentation of the generalized, complex structures by classical tensor fields, while noticing that one has a similar presentation and the same integrability conditions for generalized, paracomplex and subtangent structures. This presentation shows that the generalized, complex, paracomplex and subtangent structures belong to the realm of Poisson geometry. Then, we prove geometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006