Segment LLL-Reduction with Floating Point Orthogonalization

نویسندگان

  • Henrik Koy
  • Claus-Peter Schnorr
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive precision LLL and Potential-LLL reductions with Interval arithmetic

Lattice reduction is fundamental in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm (called LLL or L) has been improved in many ways through the past decades and remains one of the central tool for reducing lattice basis. In particular, its floating-point variants — where the long-integer arithmetic requi...

متن کامل

Progress on LLL and Lattice Reduction

We surview variants and extensions of the LLL-algorithm of Lenstra, Lenstra Lovász, extensions to quadratic indefinite forms and to faster and stronger reduction algorithms. The LLL-algorithm with Householder orthogonalisation in floating-point arithmetic is very efficient and highly accurate. We surview approximations of the shortest lattice vector by feasible lattice reduction, in particular ...

متن کامل

An LLL Algorithm with Quadratic Complexity

The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (called LLL or L3) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite’s inequality on Hermite’s constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an ndimensional space, the L3 algori...

متن کامل

Floating-Point LLL: Theoretical and Practical Aspects

The text-book LLL algorithm can be sped up considerably by replacing the underlying rational arithmetic used for the Gram-Schmidt orthogonalisation by floating-point approximations. We review how this modification has been and is currently implemented, both in theory and in practice. Using floating-point approximations seems to be natural for LLL even from the theoretical point of view: it is t...

متن کامل

Perturbation Analysis of the QR factor R in the context of LLL lattice basis reduction

In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and László Lovász introduced an efficiently computable notion of reduction of basis of a Euclidean lattice that is now commonly referred to as LLL-reduction. The precise definition involves the R-factor of the QR factorization of the basis matrix. In order to circumvent the use of rational/exact arithmetic with large bit-sizes, it is tempting to consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001