A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO<sub>2</sub> and CH<sub>4</sub> fluxes
نویسندگان
چکیده
The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using in situ or remote sensing and reanalysis-based climate data as inputs. The TCF model simulations using in situ data explained > 70 % of the r2 variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) records accounted for approximately 69 % and 75 % of the respective r2 variability in the tower CO2 and CH4 records, with corresponding RMSE uncertainties of ≤ 1.3 g C m−2 d−1 (CO2) and 18.2 mg C m−2 d−1 (CH4). Although the estimated annual CH4 emissions were small (< 18 g C m−2 yr−1) relative to Reco (> 180 g C m−2 yr−1), they reduced the across-site NECB by 23 % and contributed to a global warming potential of approximately 165± 128 g CO2eq m−2 yr−1 when considered over a 100 year time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape-scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.
منابع مشابه
A Neuro-Fuzzy Algorithm for Modeling of Fischer-Tropsch Synthesis over a Bimetallic Co/Ni/Al2O3 Catalyst
An alumina supported Co/Ni catalyst was prepared by sol-gel procedure to study the catalytic behavior during Fischer-Tropsch synthesis in a fixed-bed reactor. The effect of CO conversion (10-50%) on hydrocarbon product distribution (CH4, C5+ and C2-C4 olefin selectivities) was studied. Selectivity for CH4 decreased, while those of C5+<...
متن کاملA satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes
The northern terrestrial net ecosystem carbon bal ance (NECB) is contingent on inpnts from vegetation gross primary prodnctivity (GPP) to offset the ecosystem respi ration (Reco) of carbon dioxide (CO2 ) and methane (CH4 ) emissions, bnt an effective framework to monitor the re gional Arctic NECB is lacking. We modified a terrestrial car bon llnx (TCF) model developed for satellite remote s...
متن کاملNano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation
The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...
متن کاملEstimation of the Carbon Footprint in Dairy Sheep Farm
By 2050, the earth’s population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an in...
متن کاملNano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation
The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017