HypExp 2, expanding hypergeometric functions about half-integer parameters
نویسندگان
چکیده
In this article, we describe a new algorithm for the expansion of hypergeometric functions about half-integer parameters. The implementation of this algorithm for certain classes of hypergeometric functions in the already existing Mathematica package HypExp is described. Examples of applications in Feynman diagrams with up to four loops are given. PACS:02.10.De, 02.30.Gp
منابع مشابه
HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters
We present the Mathematica package HypExp which allows to expand hypergeometric functions J FJ−1 around integer parameters to arbitrary order. At this, we apply two methods, the first one being based on an integral representation, the second one on the nested sums approach. The expansion works for both symbolic argument z and unit argument. We also implemented new classes of integrals that appe...
متن کاملAll order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...
متن کاملAll-Order ε-Expansion of Gauss Hypergeometric Functions with Integer and Half-Integer Values of Parameters
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...
متن کاملGauss hypergeometric function : reduction , ε - expansion for integer / half - integer parameters and Feynman diagrams
The Gauss hypergeometric functions 2 F 1 with arbitrary values of parameters are reduced to two functions with fixed values of parameters, which differ from the original ones by integers. It is shown that in the case of integer and/or half-integer values of parameters there are only three types of algebraically independent Gauss hyperge-ometric functions. The ε-expansion of functions of one of ...
متن کاملOn the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters
We continue our study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we apply the approach of obtaining iterated solutions to the differential equations associated with hypergeometric functions to prove the following result: Theorem 1: The epsilon-expansion of a generalized hypergeome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 178 شماره
صفحات -
تاریخ انتشار 2008