Neuron-specific regulation on F-actin cytoskeletons
نویسنده
چکیده
Dendritic spines are neuron-specific actin-rich subcellular structures and are the location of excitatory synapses. Neurotransmitters released from presynaptic terminals activate the signals modifying the F-actin dynamics and stability and thus control dendritic spine morphology. Many ubiquitously expressed actin-associated proteins, including cortactin, have been shown to regulate dendritic spine morphology and density. Since dendritic spines are neuron-specific structures, neuron-specific proteins are expected to control F-actin cytoskeletons and dendritic spinogenesis. Recently, we demonstrated that cortactin-binding protein 2 (CTTNBP2), a neuron-specific protein, regulates the mobility and distribution of cortactin and controls the density of dendritic spines. This is the first example of a neuron-specific protein that controls the mobility of an F-actin associated protein and influences the dendritic spines. It provides a platform to explore the specific pathway triggering dendritic spinogenesis.
منابع مشابه
Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos
Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of a...
متن کاملCytoskeleton interruption in human hepatoma HepG2 cells induced by ketamine occurs possibly through suppression of calcium mobilization and mitochondrial function.
Ketamine is an intravenous anesthetic agent often used for inducing and maintaining anesthesia. Cytoskeletons contribute to the regulation of hepatocyte activity of drug biotransformation. In this study, we attempted to evaluate the effects of ketamine on F-actin and microtubular cytoskeletons in human hepatoma HepG2 cells and its possible molecular mechanisms. Exposure of HepG2 cells to ketami...
متن کاملThe Rho-Specific GEF Lfc Interacts with Neurabin and Spinophilin to Regulate Dendritic Spine Morphology
Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in...
متن کاملCytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, a...
متن کاملCortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization.
Neurons are characterized by subcellular compartments, such as axons, dendrites and synapses, that have highly specialized morphologies and biochemical specificities. Cortactin-binding protein 2 (CTTNBP2), a neuron-specific F-actin regulator, has been shown to play a role in the regulation of dendritic spine formation and their maintenance. Here, we show that, in addition to F-actin, CTTNBP2 al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2012