Joint Large Deviation principle for empirical measures of the d-regular random graphs
نویسندگان
چکیده
For a $d-$regular random model, we assign to vertices $q-$state spins. From this model, we define the \emph{empirical co-operate measure}, which enumerates the number of co-operation between a given couple of spins, and \emph{ empirical spin measure}, which enumerates the number of sites having a given spin on the $d-$regular random graph model. For these empirical measures we obtain large deviation principle(LDP) in the weak topology.
منابع مشابه
Joint large deviation result for empirical measures of the coloured random geometric graphs
We prove joint large deviation principle for the empirical pair measure and empirical locality measure of the near intermediate coloured random geometric graph models on n points picked uniformly in a d-dimensional torus of a unit circumference. From this result we obtain large deviation principles for the number of edges per vertex, the degree distribution and the proportion of isolated vertic...
متن کاملLarge Deviation Principles for Empirical Measures of Coloured Random Graphs
Abstract. For any finite coloured graph we define the empirical neighbourhood measure, which counts the number of vertices of a given colour connected to a given number of vertices of each colour, and the empirical pair measure, which counts the number of edges connecting each pair of colours. For a class of models of sparse coloured random graphs, we prove large deviation principles for these ...
متن کاملLocal Large deviations for empirical locality measure of typed Random Graph Models
Abstract. In this article, we prove a local large deviation principle (LLDP) for the empirical locality measure of typed random networks on n nodes conditioned to have a given empirical type measure and empirical link measure. From the LLDP, we deduce a full large deviation principle for the typed random graph, and the classical Erdos-Renyi graphs, where nc/2 links are inserted at random among ...
متن کاملLocal Large deviation: A McMillian Theorem for Coloured Random Graph Processes
Abstract. For a finite typed graph on n nodes and with type law μ, we define the socalled spectral potential ρλ( ·, μ), of the graph.From the ρλ( ·, μ) we obtain Kullback action or the deviation function, Hλ(π ‖ ν), with respect to an empirical pair measure, π, as the Legendre dual. For the finite typed random graph conditioned to have an empirical link measure π and empirical type measure μ, w...
متن کاملLarge Deviations of Empirical Measures of Zeros of Random Polynomials
We prove a large deviation principle for empirical measures
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.05028 شماره
صفحات -
تاریخ انتشار 2017