A 3-dimensional extracellular matrix as a delivery system for the transplantation of glioma-targeting neural stem/progenitor cells.
نویسندگان
چکیده
Neural stem/progenitor cells (NSPCs) display inherent pathotropic properties that can be exploited for targeted delivery of therapeutic genes to invasive malignancies in the central nervous system. Optimizing transplantation efficiency will be essential for developing relevant NSPC-based brain tumor therapies. To date, the real-world issue of handling and affixing NSPCs in the context of the neurosurgical resection cavity has not been addressed. Stem cell transplantation using biocompatible devices is a promising approach to counteract poor NSPC graft survival and integration in various types of neurological disorders. Here, we report the development of a 3-dimensional substrate that is based on extracellular matrix purified from tissue-engineered skin cultures (3DECM). 3DECM enables the expansion of embedded NSPCs in vitro while retaining their uncommitted differentiation status. When implanted in intracerebral glioma models, NSPCs were able to migrate out of the 3DECM to targeted glioma growing in the contralateral hemisphere, and this was more efficient than the delivery of NSPC by intracerebral injection of cell suspensions. Direct application of a 3DECM implant into a tumor resection cavity led to a marked NSPC infiltration of recurrent glioma. The semisolid consistency of the 3DECM implants allowed simple handling during the surgical procedure of intracerebral and intracavitary application and ensured continuous contact with the surrounding brain parenchyma. Here, we demonstrate proof-of-concept of a matrix-supported transplantation of tumor-targeting NSPC. The semisolid 3DECM as a delivery system for NSPC has the potential to increase transplantation efficiency by reducing metabolic stress and providing mechanical support, especially when administered to the surgical resection cavity after brain tumor removal.
منابع مشابه
Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملChemokine CXC receptor 4--mediated glioma tumor tracking by bone marrow--derived neural progenitor/stem cells.
Malignant gliomas manifest frequent tumor recurrence after surgical resection and/or other treatment because of their nature of invasiveness and dissemination. The recognized brain tumor-tracking property of neural progenitor/stem cells opened the possibility of targeting malignant brain tumors using neural progenitor/stem cells. We and others have previously shown that fetal neural progenitor/...
متن کاملA Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells
Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuro-oncology
دوره 12 7 شماره
صفحات -
تاریخ انتشار 2010